A Survey of Efficient Attention Methods: Hardware-efficient,
Sparse, Compact, and Linear Attention

Jintao Zhang', Rundong Su*!, Chunyu Liu*!, Jia Wei*!, Ziteng Wang*!, Pengle Zhang', Haoxu
Wang'!, Huiqgiang Jiang!, Haofeng Huang', Chendong Xiang', Haocheng Xi?, Shuo Yang?,
Xingyang Li%, Yuezhou Hu?, Tianyu Fu', Tianchen Zhao', Yicheng Zhang', Boqun Cao', Youhe
Jiang', Chang Chen', Kai Jiang!, Huayu Chen', Min Zhao', Xiaoming Xu', Yi Wu?, Fan Bao?,
Jun Zhu', Jianfei Chen'

Abstract

In modern transformers, the attention operation is the only component with a time
complexity of O(N?), whereas all other operations scale linearly as O(N), where N
denotes the sequence length. As sequence lengths in generative models (e.g., language
and video generation) continue to increase, improving the efficiency of attention has
become increasingly critical. Recently, numerous excellent works have been proposed
to enhance the computational efficiency of attention operation. Broadly, these works
can be classified into four categories: (1) Hardware-efficient attention: Optimizing
attention computation efficiency by leveraging hardware characteristics. (2) Sparse
attention: Selectively performing a subset of computations in attention while omitting
others. (3) Compact attention: Compressing the KV cache of attention by weight
sharing or low rank decomposition while keeping computational cost unchanged, as
with a full-sized KV cache. (4) Linear attention: Redesigning the computational
formulation of attention to achieve O(N) time complexity. In this paper, we present
a comprehensive survey of these efficient attention methods.

Contents
1__Introductionl 4
2 Preliminary| 4
[2.1 Standard Attention Computation| 4
2.2 Background of GPU|o 5)
2.3 FlashAttentionl o 6
2.4 Attention in Different Tasks oo oo 7
[2.4.1 Attention in Non-Autoregressive Models| 7
[2.4.2 Attention in LLM Training], 7
.43 Attention in LLM Inferencelo 7

*Co-second authorship. 'Tsinghua University. 2UC Berkeley. *MIT. *ShengShu.

B__Overview]

3.2 Compact Attention|

[3.3 Sparse Attention|

[4.2.1 Prefilling]
4.2.2 Decoding| e

[5

Compact Attention|

h.2 Methodsl oL

Sparse Attention|

[6.2 Preliminaries of Sparse Attention| Lo oo

6.3 Pattern-based Sparse Attention|o L Lo

6.4 Dynamic Sparse Attention|.

[7.2.1 Linear Parallel Form for Non-Autoregressive Tasks|

[7.2.2 Recurrent Form for Autoregressive Inference]

[7.5 Linear Attention with a Forget Gate|

[7.6 Linear Attention with Forget and Select Gates|

13
13
14
14
15

16
16
17

19
21
21
22
25

[7.7 Test Time Training| e 43

8 _Conclusion| 44
[A Appendix - Linear Attentions with Gates| 55
|A.1 Derivation of Quadratic Parallel Form with Gates|. 55
[A.2 Derivation of Chunkwise Form with Gates 56

1 Introduction

Attention is the core of transformers (Vaswani et al., |2017) that powers applications from language
modeling to vision understanding and multimodal generation. Despite their success, a fundamental
computational bottleneck exists: the time complexity of attention is O(N?), which grows quadrati-
cally with sequence length N. As models scale to handle increasingly long contexts, this quadratic
cost becomes prohibitive, limiting deployment in applications with low latency requirements or
on resource-constrained hardware. Addressing this challenge has led to a surge of research efforts
toward efficient attention.

In general, efficient attention methods aim to reduce time or memory costs while preserving the
effectiveness of the standard attention. These approaches can be divided into four main categories:
(1) Hardware-efficient attention optimizes the implementation efficiency of the original attention
without changing its computation logic. By better utilizing modern GPU features, techniques
such as matrix tiling, kernel fusion (Dao et al., 2022 Dao, [2024), and quantization to leverage the
low-bit Tensor Core (Zhang et al. a; 2024a; 2025a3c; Shah et al., [2024) are introduced to accelerate
attention. (2) Compact attention compresses the KV cache (Zhao et al., 2023) to reduce memory
overhead during inference. This is typically achieved through weight sharing (Ainslie et al., 2023)
and low-rank decomposition (Liu et al., [2024a), enabling memory-efficient caching while keeping
computational cost unchanged compared with a full-sized KV cache. (3) Sparse attention reduces
computational cost by skipping calculations for non-critical parts of the attention matrix. This
approach is viable because the attention matrix is commonly observed to be sparse, with a large
number of its values being close to zero. Typically, sparse attention is implemented by applying a
fixed or dynamic sparse mask to the matrix, which directs the model to perform attention operations
only on the unmasked positions, i.e., the crucial positions. (4) Linear attention removes the
softmax operation, which enables reordering the matrix multiplications in the attention and avoids
the O(N?) time complexity. Specifically, it first computes the key—value product KTV and then
multiplies the result with the queries @), reducing the overall computational complexity to linear
O(N).

In this survey, we systematically and comprehensively review efficient attention, summarizing existing
works, their motivations, and core principles. First, in Section [2| we introduce the preliminaries of
attention, including FlashAttention and the differences in attention methods across various tasks.
Next, in Section [3] we present the motivation, fundamental idea, and common practices of the
four categories, i.e., hardware-efficient attention, sparse attention, compact attention, and linear
attention. Subsequently, in Sections [[5] [6] and [7} we provide a detailed discussion of each category,
including their unified frameworks and formalized formulations, a summary of the methods along
with their features, and dedicated descriptions of the implementation details for individual methods.

2 Preliminary

2.1 Standard Attention Computation

The core idea of attention (Bahdanau et al., |2016|) is to dynamically retrieve information by
computing a weighted sum of values, where the weights are determined by the relevance of each
value’s corresponding key to a given query. A standard implementation is the Scaled Dot-Product
Attention (Vaswani et al., |2017). It operates on matrices of queries (Q), keys (K), and values (V).
The relevance score is calculated as the dot product of a query with a key. To allow the model

Table 1: Notations.

Notation | Shape Meaning
N,n,h,d 1x1 sequence length, num heads and head dim of attention
D,,,D 1x1 hidden dim of a model, total dim of all attention heads (D = hd)
Q,K,V,0 N xd qurey, key, value, and output of attention
S, P N x N S =QK",P = Softmax(S)
M N x N the mask needed to be added to P
by, by 1x1 flashattention block size for @ and K,V
M % X bﬁ - the mask needed to be added to each flashattention block of P
Q;,0; by x d flashattention block for @, O, i.e., Q[i X by : (i + 1) x by
K;, V,; by x d flashattention block for K,V i.e., K[j X bgy : (7 + 1) X by
Sij f)i,j by X by flashattention block for .S and P
My 55 li 5 by x 1 prefix rowmax and expsum statistics for online softmax
Qt, K, Vg 1xd query, key, value tokens of attention inputs
H;, hy d x d,1 x d | hidden state formed by summing ktTflvt,l up to the current state
G dxd forget gate in linear attention
I6] 1x1 select gate in linear attention
10} - kernel functions in linear attention

to jointly attend to information from different representation subspaces, Multi-Head Attention
(MHA) (Vaswani et al., 2017) is operated as follows: The queries, keys, and values each undergo
h parallel projections using different learned weight matrices to produce independent inputs for h
heads. Then, the scaled dot-product attention is applied in parallel to each head, yielding A distinct
output matrices. This final linear projection acts to synthesize the information from all attention
heads, learning to optimally combine their outputs into a single final output. For each individual
attention head, the computation is formulated as:

QKT

S==)
Vd

P = softmax(S), O = PV. (1)

Here, Q, K,V € RV*4 are the input matrices for a single head, S € R¥*¥ is the matrix of attention
scores, O € RV*? g the output of the head. The attention probability matrix P € R¥*¥ also known

as the attention map, represents the normalized importance of each query-key pair. For numerical
exp(Si,;)
> exp(Sik)’

row-wise maximum m; = max(S;) before exponentiation to prevent overflow: P, ; =

stability, the softmax function, softmax(S);; = is implemented by subtracting the

exp(Si,;—m;)
Zk exp(S;,k—m;)

2.2 Background of GPU

Modern GPUs are highly parallel processors featuring a hierarchical memory architecture. To explain
the hardware, we use NVIDIA’s CUDA terminology, as its computational and memory abstractions
are common to most modern GPUs. A GPU’s computational power is derived from its multiple
streaming multiprocessors (SMs). Each SM integrates numerous CUDA Cores for general-purpose
workloads and specialized Tensor Cores to accelerate matrix multiplication (NVIDIA Corporation,
2025). The aggregate performance of these cores determines the GPU’s overall computational
throughput, C; (operations/second), measured in floating-point operations per second (FLOPS). To
supply data to these computational units, the GPU employs a tiered memory hierarchy. Each SM
is coupled with a small, high-bandwidth on-chip Shared Memory. Concurrently, all SMs share

access to a large-capacity Global Memory, typically High Bandwidth Memory (HBM), which is
characterized by lower bandwidth (Jia et al., 2018)), denoted as B,, (bytes/second).

To better illustrate these concepts, consider a GPU performing matrix multiplication C' = AB, where
A e RMXK B e REXN and C € RM*N are all stored in float data type. The computation can be
executed by transferring A and B from global memory to shared memory for computing, and then
writing C' back from shared memory to global memory progressively. The total I/O (read and write)
volume is 4(M K + KN + M N) Bytes, while the total computational workload is 2M KN operations
(including both multiplications and additions). The total I/O time is 77,0 = 4(MK+K£V+MN)
seconds, and the total computation time is Ttompute = QMCK N seconds. Since computation and I/0O
can be overlapped via asynchronous pipelining (NVIDIA| 2025; Shah et al., 2024) the overall latency
is determined by max (7} /0> Teompute)- 1f 11 /O dominates, the process is memory-bound; if Ttompute
dominates, it is compute-bound.

FlashAttention Loop for K blocks ~ |Global Memory|
KT ce i | SM |
L >
sm1< o E> S\

_ . L
sM2<_ S =(HH @) V| Sor
: : P = OnlineSoftmax(S) <] 1%

0 <:| O — (f"E) "b|OCkS

Figure 1: Illustration of FlashAttention. Different @) blocks are processed on different SMs, where
each SM iteratively loads K and V blocks and finally outputs an O block.

2.3 FlashAttention

The query, key, and value matrices (), K, and V have dimensions N x d, while the score and
probability matrices S and P are N x N. Although d is relatively small (e.g., 64 or 128), N can
reach thousands or even millions. Consequently, the N x N matrices (S, P) are far larger than
(Q,K,V), and a naive implementation suffers from heavy global memory I/O when reading and
writing (S, P). As shown in Figure (1} FlashAttention (Dao et al., 2022; Dao, 2024) addresses this by
partitioning @, K, and V along the token dimension into blocks Q;, K;, and V; of sizes by, by,, and
biy, respectively. To avoid memory 1/O for (S, P), it uses online softmax (Milakov & Gimelshein,
2018) to compute each output block O; progressively. First, for each block of K;, V;, it computes
iteratively as follows:

Sij = QiKJT/\/av (mij, Pij) = 6(mij—1,Si)). (2)
lij = exp(mm-_l — mi,j)lm_l + I‘OWSUHI(f’Z'j). (3)
0,; = diag (exp(m; j—1 —my;))O0; -1 + f’ijVj. (4)

Here, m;; and [;; are b, x 1 vectors initialized to —oo and 0, respectively. The operator ()
denotes the online softmax, which updates according to m;; = max{m; j_1,rowmax(S;;)} and
f’ij = exp(S;; — my;). After completing all iterations, i.e., j = N/by,, a final output block is given
by Oi = diag(lij)*lOij.

2.4 Attention in Different Tasks

2.4.1 Attention in Non-Autoregressive Models

In non-autoregressive models such as BERT (Koroteev}, 2021)) and Vision Transformer (Han et al.,
2022), attention is computed in parallel over a sequence of N input tokens , with each token
attending to every other:

O = softmax (Qj{;> V. (5)

For N input tokens, the query @ and key K matrices have dimensions N X d, and the value matrix
V has dimensions N x d. The computational cost comes from the matrix multiplications QK ' and
PV, which have a time complexity of O(N?d). Most models today use FlashAttention (Dao, 2024)
to efficiently read the input matrices, with O(Nd) I/O complexity. However, for a large number of
tokens IV, the quadratic growth in arithmetic operations significantly outweighs the O(/Nd) memory
access cost. Thus, this operation is typically compute-bound for non-autoregressive models.

2.4.2 Attention in LLM Training

To preserve the autoregressive property of LLMs (Zhao et al., 2023)), a lower-triangular causal mask
is applied during training, ensuring that each token can only attend to itself and preceding tokens:

QK
Vd

where the mask matrix M is a lower-triangular mask defined as:

0 if § <.
R @
—oo if j > .

O = softmax (+ M) V. (6)

The matrix dimensions are identical to the non-autoregressive case, and the addition of the N x N
causal mask M does not change the dominant computational complexity of O(N?d). Similar to
attention without a causal mask in non-autoaggressive tasks, attention in LLM training is also
compute-bound.

2.4.3 Attention in LLM Inference

The inference process of modern LLMs can be divided into two main stages: (1) the prefilling
phase, which processes the initial prompt and produces the first output token; and (2) the decoding
phase, which generates the remaining tokens autoregressively. In the prefilling phase, the model
processes all input tokens in parallel, computing the complete @, K,V matrices for the prompt in
the same manner as in training (Section , which is typically compute-bound. The resulting K
and V matrices are stored in the GPU’s global memory as the KV cache (Zhao et al., 2023). In
the decoding phase, the model generates one token at a time. For each new token, it computes the

corresponding ¢, k, v vectors, and the query ¢ attends to all keys and values. The attention output
is computed as:

-
o = softmax <Q(K\/”§)> (V||v). (8)

Here, the query ¢, new key k, and new value v are 1 x d vectors, while the cached key matrix K and
value matrix V are of size N x d, where N is the current sequence length. The symbol || denotes
the vertical concatenation operation. The term K|k represents appending the new key vector k as
a new row to the existing key matrix K. Similarly, V'||v represents appending the new value vector
v as a new row to the value matrix V. Both resulting matrices have a new size of (N + 1) x d. This
operation involves computation complexity of O(Nd) for matrix-vector multiplication and memory
complexity of O(Nd) for loading the KV cache. As observed in FlashAttention (Dao et al., [2022),
on modern GPUs, I/O operations are often significantly slower than computation, even when both
have equivalent complexity. Thus, the performance of decoding is typically limited by memory
bandwidth, not compute speed, making this operation memory-bound.

3 Overview

In this section, we outline the motivations, fundamental ideas, and common practices of four major
categories: hardware-efficient attention, sparse attention, compact attention, and linear attention.

3.1 Hardware-Efficient Attention

To design efficient operations on modern GPUs, it is crucial to understand their memory hierarchy,
as mentioned in Section A typical workflow involves loading data from global memory to shared
memory, performing computations, and writing the results back to global memory. To hide memory
access latency, computation and memory I/O can be fully overlapped and executed in parallel
through pipelining (NVIDIA| 2025; |[Shah et al., [2024). Consequently, the total execution time is
dominated by the longer of the two, which becomes the performance bottleneck. Specifically, when
the computation time is greater than the memory I/O time, the operation is compute-bound; when
the memory I/O time is greater than the computation time, the operation is memory-bound.

Naive attention is inefficient under heavy I/O. As described in Section naive attention
is memory-bound because of the materialization of two large intermediate matrices, the attention
scores S = QK" and the probability matrix P = softmax(S), which are both of size O(N?) for
a sequence of length N. Storing these matrices requires writing them to and reading them from
the slow global memory, creating a significant I/O bottleneck. Let’s consider an example on an
NVIDIA A100 GPU (NVIDIA Corporation, [2020)), which has a global memory bandwidth of up
to 2.0 TB/s and a peak throughput of 312 TFLOPS for FP16 operations (NVIDIA). Suppose we
have input matrices @, K, and V with dimensions [100K, 64]. The intermediate matrices S and P
will have dimensions [100K, 100K]. The size of just one of these intermediate matrices in 16-bit
precision is: 100K x 100K x 2 bytes = 2e10 bytes ~ 19GB (1 K = 1024). The total number of

floating-point operations (FLOPs) for the two matrix multiplications (QK " and PV) is 4N2d. The
2

computation time is: Teompute = Zx(zcjtv 4 _ 4§1126X1?§1624 ~ 8.2 ms, where C; quantifies the GPU’s raw

computational speed in operations per second. The memory access time, dominated by writing

and reading S and P from global memory, is: Tj/o = 2x(size of Stsize of P) _ Qixlﬁéob?ﬁ:% ~ 40 ms,

B
where B,, measures GPU’s memory data transfer rate in Bytes per second. The memory access time

Hardware-efficient Attention | Compact Attention

N x D,
QK YV
G Compressed KV Cache ICC VC

GPU 312 Tiling, Expand to full size L} N x DO
TOPS [Quantization,] g . .
L+
Muti-Head Attention {%
| || Rednce KV cache from O(VD) 10 0(¥D,) |
[Sparse Attention] Linear Attention

s T+ approx. T
P = Softmax(QK ") softmax(QKT)——> #(Q)¢(K)

< o 8- (@0e(v])

0.5(0.11 0] 0 N xd dx N N xd
@ 10.1{01]0.9] 0 Parallel Computation
0 fo.s05f0) | S """" S """"""""" T """"
. =Si1+o(ke) v
K,V causal: [d La ad ¢d(>< f) 14
Skip QK " PV corresponding to Izl Sequent 1a1Updat1 RGN

O(Nd?) time complexity

Figure 2: Overview of efficient attention methods.

is nearly five times greater than the computation time, making standard attention an inefficient,
memory-bound operation.

To relieve the I/O burden, FlashAttention introduces a tiling strategy that partitions the @, K, and
V' matrices into smaller tiles (Q, K, and V) that fit entirely within the shared memory of one SM.
This design integrates with online softmax (Milakov & Gimelshein| 2018), eliminating the need to
write and read the N x N matrices S and P between global and shared memory. This transformation
turns standard softmax attention from memory-bound to compute-bound, significantly increasing
the attention efficiency.

As discussed in Section after using FlashAttention to optimize 1/O, LLM inference is charac-
terized by two distinct phases: compute-bound prefilling phase and memory-bound decoding phase.
Hardware-efficient attention methods are therefore engineered to address the specific bottlenecks
of each phase. For the compute-bound prefilling stage, hardware-efficient methods focus on maxi-
mizing parallel processing and computational throughput. For the memory-bound decoding stage,
hardware-efficient methods focus on accelerating the 1/O for the KV cache.

3.2 Compact Attention

Exploding KV cache memory in LLM inference. During inference of LLMs, vanilla Multi-
Head Attention (MHA) (Vaswani et al., [2017) introduces O(N hd) memory complexity for KV cache.
This consumes a lot of GPU memory and can even dominate VRAM usage when the context is
long. For example, with N = 128K context length, h = 32 attention heads and d = 128 head
dimensionality in a 48-layer Transfomer with MHA, the KV cache accounts for 96GB memory when
saved in bfloat16 format, exceeding the VRAM needed for parameters of the entire model and
most GPUs including A100, H100, etc. The problem becomes even worse in batch decoding systems
where KVs of multiple sequences need to be cached simultaneously.

KV cache compression. To mitigate the high memory cost of the KV cache, a common
approach is to decouple the KV entries stored in memory (“storage KV”) from those used in
attention computation (“computation KV”), and then compress the storage KV while preserving
the size of computation KV, which we call “Compact Attention”. Let D = hd denote the total
dimensionality for attention computation, and K = [K O K (h)] denotes the concatenation of h
attention heads with K € RV*4 heing the key matrix of head i, likewise for V. To reduce KV
cache memory, these methods first store compact key and value tensors, K., V. € RN*Pe_ where
D. < D is the compressed KV size per token, instead of the larger tensors K,V € RV*P . Before
attention computation, the compact tensors are expanded to full size via a function from D, to D,
typically implemented by replication. In this way, the KV cache becomes much smaller than MHA
to save memory, while the computation KV remains the same size to avoid degraded performance.

The formulation at a high level is presented as follows.

ICC, VC c RNXDC (9)
K,V = Expand(K.), Expandy,(V,) € RV*P (10)
o=MHA(q,K,V) (11)

where MHA(-) denotes the multi-head attention operation as stated in Section Compact
attention methods reduce the size of KV cache K. and V. from O(ND) to O(ND,) to save memory,
while the computation KV states K,V remain the same size as MHA with the Expand(-) function
to avoid degraded performance.

3.3 Sparse Attention

Sparsity for matrix multiplication efficiency. A matrix is considered sparse when it contains
a large number of zero elements. Such sparsity can be exploited to accelerate matrix multiplication
(MatMul) C' = AB in two main cases: (1) if C[¢, j] = 0, the computation involving the entire row
Ali,:] and column B[, j] can be skipped; (2) if A[i,j] = 0, the product A[, j] - B[j,:] contributes
nothing to C[i,:] and can be omitted; similarly, if B[i, j] = 0, the computation of A[:,] - BJi, j] can
be avoided.

The Softmax operation applies an exponential transformation to the inputs and normalizes them
such that the outputs sum to 1. This operation significantly compresses smaller input values toward
near-zero values. Consequently, the attention map in attention P = Softmax(QK " /v/d) exhibits
inherent sparsity (Child et al., |2019; Zhang et al. 2025b), as the softmax operation often creates
many values approaching zero. Then, when some values in P are equal to zero, the corresponding
computation in matrix multiplication of QKT and PV can be skipped. Sparse attention exploits
such sparsity to accelerate attention by two steps. First, it constructs a sparse mask M, which

10

determines which elements of the attention map P should be computed. Second, it computes
attention only for the parts corresponding to the sparse mask M:

P = Softmax(M + QK " /Vd). (12)
O = PV. (13)

where M is an N x N matrix whose elements are either 0 or —oo. M;; = 0 specifies that both the
attention score qiij and its corresponding output P[i, jlv; should be computed, while M;; = —o0
indicates these computations should be skipped.

Sparse FlashAttention. Typically, the actual computation process of sparse attention needs to
be combined with FlashAttention to achieve efficient performance. This is because FlashAttention-
based methods improve efficiency by obviating the need to write the intermediate S and P matrices
to global memory and subsequently read them back into shared memory. FlashAttention performs
block-wise matrix multiplication for QK ", and PV, which requires that the granularity of sparse
attention must at least match the block size used in FlashAttention. Since FlashAttention computes
QK" and PV in a block-wise manner, it imposes a fundamental constraint: the granularity of any
applied sparsity cannot be finer than the operator’s block size. Implementmg sparse FlashAttention
is intuitive. By skipping certain block matrix multiplications of QzK and PUV according to the
M, we can accelerate the attention computation.

3.4 Linear Attention

Linear Parallel Form Recurrent Form Chunkwise Form

N xd 1xd
dx N d><1° C><d uldxd
® C><d

i' Vi
oL dXd Cj + A

0| ¢ x d

[2]
(AP E o | o BT
t Q| | KT Vi
1><d [.led (] Qu @M) @

N xd N xd dxd Output Computation

Figure 3: Linear attention computation forms.

The core idea of linear attention is to reduce computational complexity from O(N?) to O(N) with
respect to sequence length V. This is achieved by replacing the softmax function with a kernel
function ¢, which allows the standard attention computation to be reordered as:

0 = ¢(Q)(o(K)TV). (14)

By first calculating the term (¢(K)TV), this method avoids the explicit construction of the massive
N x N matrix QK T, thus achieving linear complexity.

Computational forms for training and inference. The need to reconcile the O(N) efficiency

of linear attention with the causality required by autoregressive (AR) models leads to three distinct
computational forms.

11

Linear Attention With Gates
dxd dxd 1xd et dxd Test Time Training
(0)) + (.) Ht : a set of Learnable Parameters
_) <
Forget Gate igh Select Gate ‘ X . H ¢ ‘ :> Output
I

i) o
dx1 dxd dx1 V Output

Figure 4: Linear attention with forget and select Figure 5: Overview of test time training.

gates.

1. Linear Parallel Form. This is the direct application of the core idea, defined as O =
A(Q)(¢(K)TV). Tt is highly efficient for the training and inference of non-autoregressive (NAR) tasks,
where the entire sequence is processed simultaneously. However, this form is unsuitable for AR models
for two reasons: (1) For autoregressive inference, its simultaneous processing violates step-by-step
causality. (2) For autoregressive training, forcing causality with a mask (O = (¢(Q)¢(K)" © M)V)
creates a Quadratic Parallel Form, reverting complexity to an inefficient O(N?).

2. Recurrent Form. This form is designed for efficient autoregressive inference. It introduces a
fixed-size state Hy = > '_; ¢(k;) Tv; that is updated recurrently: Hy = H;_1 + ¢(k¢) vy The output
is then computed as o, = ¢(q)H;. This approach eliminates the growing KV cache of standard
attention, making each generation step a constant-time O(1) operation. While ideal for inference,
its inherently sequential nature is hardware-inefficient for training.

3. Chunkwise Form. This form is a hybrid solution designed for autoregressive training, resolving
the issues of the previous forms. It divides the sequence into fixed-size chunks and uses a dual strategy:
Attention is computed in quadratic parallel form within each chunk to maximize parallelization.
Causality is maintained by passing a recurrent state between chunks. This gives a practical
complexity of O(NCd + Nd?), where C is the chunk size.

Forget and Select Gates. To enable the fixed-size hidden state H; to dynamically hold the
most relevant information, the forget and select gates were introduced. Then the H; update can be
formulated as:

Hy=GY o Hi1+GP © ¢(ke) v (15)

Here, inspired by gates of RNNs(Medsker et al., 2001), Ggf) acts as a forget gate, deciding how

much historical information (H;—1) to keep, and th) serves as a select gate, determining how much
current information to hold.

Test Time Training. Test-Time Training (TTT) (Sun et al., 2024) views the hidden state H; as
a set of learnable parameters, also called ‘fast weights’ (Schlag et al., 2021b). TTT will continuously
update the hidden state via gradient descent (Robbins & Monro, [1951)) during both training and
inference.

12

4 Hardware-efficient Attention
In this section, we present unified formulations for hardware-efficient attention, provide a comprehen-

sive summary of representative methods and their key features, and elaborate on the implementation
details of individual approaches.

Table 2: Summary of hardware-efficient attention methods. — means no additional preprocessing.

Method ‘ Category ‘ U(-) Type ‘ O(:) Type
FlashAttention (Dao et al., 2022) Prefilling - -
FlashAttention2 (Daol [2024) Prefilling — —
SageAttention (Zhang et al.l |a)) Prefilling INT8 quantizer —
SageAttention2 (Zhang et al., |2024a)) Prefilling INT4 quantizer FP8 quantizer
SageAttention2++ (Zhang et al.l [2025¢) | Prefilling INT4 quantizer FP8 quantizer
SageAttention3 (Zhang et al., |2025a)) Prefilling FP4 quantizer FP4 quantizer
FlashAttention3 (Shah et al.,|2024) Prefilling | — or FP8 quantizer | — or FP8 quantizer
FlashDecoding (Dao et al., 2023) Decoding split KV cache split KV cache
KVQuant (Hooper et al. [2024])) Decoding | INT2/3/4 quantizer | INT2/3/4 quantizer
KiVi (Liu et all |[2024d) Decoding INT2 quantizer INT2 quantizer
PagedAttention (Kwon et al.} 2023 Decoding |reallocate KV cache | reallocate KV cache
FlashInfer (Ye et al. [2025) Decoding |reallocate KV cache | reallocate KV cache

4.1 Framework

Corresponding to two stages in LLMs inference as introduced in Section. Hardware-efficient
Attention can be divided into two categories, i.e., prefilling and decoding. Inspired by FlashAttention,
prefilling methods also partition @), K and V into blocks Q;, K;, V;. They compute each output
block O; iteratively as follows:

A

Q K,V =19(Q), ¥(K),0(V). (16)
S=QK', P =06(softmax(S)), O=PV, (17)

where ¥(-),O(-) are preprocess functions to accelerate computation, e.g., quantization functions.
For simplification, we omitted the division by v/d and the details of online softmax. Decoding
methods also partition K and V into blocks, but their input q is a vector, so the output vector o is
computed as follows:

K,V = ¥(K),0(V).

s=qK', p= softmax(s), o= pV.
where ¥(-), ©(-) are KV cache preprocess functions. In Table 2| we summarize these two categories of
hardware-efficient attention methods. The ®(-) Type and ©(:) Type refer to different pre-processing
functions. Splitting the KV cache means splitting the KV cache along sequence length to be loaded
by different SMs. Reallocating the KV cache means organizing the KV cache memory into different
storage formats. For example, Paged Attention allocates KV cache into fixed-size pages to reduce

memory fragments, boosting the I/O speed.

13

4.2 Methods

4.2.1 Prefilling

Hardware-efficient attention methods for optimizing the prefilling phase typically aim to accelerate
computation by fully exploiting hardware capabilities.

» FlashAttentionl & 2. Building on the online softmax (Milakov & Gimelshein, |2018)) technique,
FlashAttention (Dao et al.l 2022) pioneered the fusion of scaled dot-product attention into a single
kernel by partitioning @), K, V into blocks and computing S;; = Q,-K;-r with on-the-fly softmax
computation. Due to the linearity of matrix multiplication PV, the output blocks O;; can be
incrementally updated alongside the online softmax statistics with rescaling factor exp(m; j—1 —m; ;)
(as detailed in Section . FlashAttention (Dao et al., 2022) keeps K;, V; in shared memory while
iterating over Q; blocks, requiring each SM to read/write intermediate results through global memory
to update O;j + O; 1, resulting in O(N2d/by,) memory transfers. To reduce this quadratic I/O
complexity, FlashAttention2 (Dao, 2024)) inverts the loop order by keeping Q; in shared memory and
iterating over K;, V; blocks, updating l;;, m;j, O;; locally within each SM, achieving O(Nd) global
memory transfers in total. For backpropagation, both versions recompute S;; = QZ-KjT to calculate
gradients, leveraging the stored I;, m; global statistics from the forward pass to directly obtain
exact probabilities P;; = exp(S;; — m;)/l; without additional softmax operation. Consequently,
FlashAttention and FlashAttention2 achieve approximately 3x and 10x speedup, respectively, in
training (forward + backward) compared to standard PyTorch implementations, and have become
the de facto baseline for long-context training.

» SageAttention. SageAttention (Zhang et al.,) builds on the block-tiling strategy of
FlashAttention (Dao et al., [2022)) and quantizes Q and K to INT8 on a per-block basis, where each
block Q; and K; has its own quantization scale dq, = max(|Q;|)/127 and dk, = max(|K;[)/127.

Using these scales, the attention score is approximated as S;; =~ Q,JIA(]T((SQl X 0K,/ Vd). To
mitigate quantization error, SageAttention applies a preprocessing step that subtracts the token-wise
mean from K, and it keeps 15” and V; in FP16 while using an FP16 accumulator, instead of
FP32, to compute f’mVj. With these optimizations, SageAttention achieves a 2.1x speedup over
FlashAttention while preserving end-to-end performance across language, image generation, and
video generation models.

» SageAttention2 & 24++4. SageAttention2 & 2++ (Zhang et al., 2024a; 2025¢) further accelerate
attention by quantizing QK T directly to INT4, leveraging the speed advantage of INT4 tensor cores.
To reduce the quantization error introduced by low bit-width and outliers, SageAttention2 exploits
the layout of Tensor Core and proposes a per-thread quantization granularity. It also applies the
preprocessing step of Sageattention to both K and @), removing outliers from both matrices before
quantization. For the PV computation, SageAttention2 utilizes FP8 tensor cores and adopts a
two-level accumulation strategy to address the FP22 accumulator limitations in NVIDIA’s Ada and
Hopper architectures. SageAttention2++ further adopts FP16 accumulators for PV computation to
achieve additional speedup on consumer-level GPUs. Together, SageAttention2 and 2++ achieve
up to a 3x and 3.9x speedup over FlashAttention while preserving end-to-end performance across
language, image, and video generation tasks.

» FlashAttention3. While recent GPUs like H100 have massively increased TensorCore
throughput, computation is bottlenecked by softmax operations on CUDA cores. FlashAttention
3 (Shah et al., |2024]) addresses this by leveraging Hopper architecture (NVIDIAL 2022) features.

14

First, it adopts the warp-specialized programming paradigm where different warp groups (128
threads) execute load and compute tasks separately to fully hide data transfer latency. Second,
it uses asynchronous TensorCores to overlap computation: while CUDA cores compute online
softmax for the current block (mij,lij,f’ij, O,;), TensorCores concurrently perform f)m-,lvj,l
multiplication from the previous iteration, enabling parallel operation of different computational
stages. FlashAttention3 further exploits FP8 TensorCores by quantizing @, K,V to FP8 precision
for matrix multiplications, providing 2x theoretical speedup over FP16/BF16. These optimizations
achieve up to 75% TensorCore utilization, yielding 1.5-2x speedup over FlashAttention2 and reaching
1.2 PFLOPS throughput with FP8 precision, demonstrating the possibility of low-precision attention.

» SageAttention3. SageAttention3 (Zhang et all |2025a)) extends low-bit attention to both
inference and training. For inference, it applies FP8 microscaling quantization to the QK ' and PV
matrix multiplications using a fine-grained 1 x 16 group size, which mitigates outlier effects and
improves FP8 accuracy. It also introduces a two-level quantization for P, first normalizing each
token’s range to [0, 448 x 6] via per-token scaling and then applying FP4 microscaling, maximizing the
representational capacity of FP8 quantization scales of P. For efficient training, the SageAttention3
paper also proposes SageBwd. It preserves the most accuracy-sensitive matrix multiplication in the
backward pass at FP16 while quantizing the others to INT8. SageAttention3 achieves 1038 TOPS
on RTX5090 (a 5x speedup over FlashAttention) for inference, end-to-end losslessly accelerating
various large models. SageBwd delivers lossless accuracy in fine-tuning tasks.

4.2.2 Decoding

As discussed in Section the decoding phase is memory-bound due to the large I/O overhead
for the KV cache, and hardware-efficient attention methods for decoding primarily aim to accelerate
I/O for the KV cache.

» FlashDecoding. Though FlashAttention2 (Dao, [2024)) works well in training and prefilling,
partitioning by Q; blocks across SMs leads to poor SM utilization due to the limited number of query
tokens in the decoding phase. FlashDecoding (Dao et al., 2023)) addresses this by further splitting the
KV cache: it partitions K,V along the sequence dimension into multiple sub-sequences { K @),y)},
with each SM processing all query tokens against one KV sub-sequence using FlashAttention2
FA2(Q, K (@), V(j)), then performing reduction of {) and m() online softmax statistics of each
sub-sequence in global memory to rescale and aggregate the final results O. This KV-split approach
enables full SM utilization during decoding, achieving 8x speedup over FlashAttention2 on long
sequences with CodeLlama-34B.

» PagedAttention. PagedAttention (Kwon et all 2023) proposes an attention mechanism
designed to reduce KV cache memory overhead in LLM serving by introducing a paging system
inspired by virtual memory. PagedAttention breaks the KV cache into fixed-size pages that can be
shared, reused, and efficiently allocated across requests. This avoids redundant copies and reduces
memory fragmentation. Integrated into the open-source system vLLM, this approach enables
near-zero memory waste and supports high-throughput decoding. PagedAttention is well-suited
for real-time LLM applications such as chatbots and inference APIs, where memory efficiency and
scalability are critical. Its design allows more concurrent requests with less GPU memory, making
LLM serving more cost-effective.

» KIVI. To reduce KV cache memory usage, KIVI (Liu et al., 2024d) analyzes K,V distributions
in popular LLMs, revealing that keys should be quantized per-channel while values should be

15

quantized per-token to preserve accuracy. To integrate with decoding, KIVI maintains the most
recent R key-value pairs in FP16 precision and applies group quantization to the previous KV cache,
where every G consecutive elements share a single scaling factor. Since keys are quantized per-
channel (Zhang et al. a)), unquantized keys exceeding R tokens are only quantized when reaching the
size of G and appended to the quantized cache blocks. During computation, quantized portions are
dequantized and concatenated with FP16 KV cache for decoding. This tuning-free 2-bit quantization
achieves 2.6 x peak memory reduction while maintaining model quality, enabling 4x larger batch
sizes and 2.35-3.47x throughput improvements on Llama (Touvron et al., 2023), Falcon (Almazrouei
et al.l 2023), and Mistral (Jiang et al., 2023) models.

» KVQuant. KVQuant (Hooper et al.l 2024) proposes a novel quantization framework for
compressing the key-value (KV) cache in low precision to reduce memory access. KVQuant analysis
KV cache in LLM, revealing that K before RoPE (Su et al., [2024a) exhibits channel-wise outliers,
whereas V' is more uniformly distributed. Based on this, KVQuant introduces three techniques:
(1) pre-RoPE key quantization to exploit smoother distributions before positional encoding, (2)
sensitivity-weighted non-uniform quantization that allocates more precision to sensitive tokens, and
(3) a dense-plus-sparse outlier handling scheme that isolates and stores large-magnitude values
separately using 8-bit precision while compressing the rest to 3-bit. This method is efficient in LLM
inference in long-context scenarios, such as retrieval-augmented generation and code completion,
where FP16 KV caches would quickly exceed GPU memory limits.

» FlashInfer. Flashlnfer (Ye et al.,|2025) combines multiple strategies, including memory-efficient
KV-cache storage, attention code generation, and dynamic scheduling. It stores key—value caches
in a compact way, supporting different formats such as paged attention (Kwon et al., 2023) and
radix-tree layouts (Zheng et alJ 2024)). These are unified into a single block-sparse matrix format,
which can adjust block sizes based on the amount of shared context. Then, FlashInfer allows users
to specify attention variants, which can be Just-In-Time (JIT) compiled into high-performance
CUDA kernels. When input lengths vary, FlashInfer uses a load-balanced scheduler that still works
with CUDA Graph’s static execution mode, avoiding runtime overhead. FlashInfer is integrated
into production frameworks like SGLang (Zheng et al., 2024) and vLLM (Kwon et al., 2023), giving
significant speedups, especially for long-context inference and when generating multiple sequences
in parallel.

5 Compact Attention

In this section, we first present unified formulations for compact attention, then review representative
methods, summarizing their key characteristics, and then formulate individual solutions.

5.1 Overall Framework

Compact attention methods are designed to reduce the memory consumption of the KV cache during
LLM inference. In MHA, we store the full-resolution KV matrices exactly as used in computation,
causing the KV cache size to grow rapidly. Compact attention methods decouple storage KV
from computation KV, storing compressed KV states and expanding them for computation. This
approach significantly reduces storage KV size compared to MHA, lowering memory usage, while
preserving the computation KV size to prevent significant performance degradation.

16

Table 3: Summary of compact attention methods.

Method | KV Cache | Parameters | Expand Method
MHA
(Vaswani et al., [2017) 2hd 4Dy, hd None
MQA
(Shazeer] [2019) 2d 2D hd + 2Dy d Repeat
GQA
(Ainslie et al [2023) 2hyeud 2Dhd + 2D iy d Repeat
MLA oo+ d D (7q + Thy + d" + hd) Low Rank
(Liu et al;} 2024a) oo +rgh(dN + d®) + rp,h(dY +d) | Projection + Repeat
MFA)
(Hu et al [2024) 2d Dp(3d + hd) + hd Repeat
TPA
(Zhang et al.| [2025g) (re +70)(h+d) | Dim(rg + i 4 70)(h + d) + Dihd Tensor Product

The general formulation can be expressed as follows.

q, Ke, Ve = Projg(z), Proj (X)), Projy, (X). (20)

K,V = Expandy(K.), Expand,,(V,). (21)

o=MHA(q, K, V). (22)

where K = [K(, ..., K(M] € RV*P denotes the concatenation of h attention head key matrices,

with K ¢ RV xd representing the key matrix of head ¢ and D = hd. The same notation applies to ¢
and V. Here, z € RP™ is the hidden state of the current token, X € R?*Pm ig the matrix of hidden
states for the context tokens, Proj(-) and Expand(-) denote the projection and expansion functions,
respectively, and MHA(-) denotes the multi-head attention operation. Vanilla MHA (Vaswani
et al., [2017) can be expressed within this formulation by setting Projc (X) = aWi, € RV*P,
where Wi, € RP=»*DP " and similarly for Projg and Projy,. The expansion function is simply
Expandy(-) = Expandy,(-) = id(+), i.e., the identity projection. Compact attention methods reduce
the size of the cached key—value tensors K. and V. by modifying the projection function and utilizing
a non-trivial expansion function. These methods do not alter the procedure or computational cost
of scaled dot-product attention, but they can substantially lower the memory consumption of the
KV cache, enabling memory-efficient scaling, particularly for long sequences.

Table [3] summarizes the KV cache size for each token, total parameters for attention, and expansion
function type for compact attention methods, with the notations detailed in the sections below.

5.2 Methods

» MQA. The core innovation of Multi-Query Attention (MQA) (Shazeer, [2019) lies in its
asymmetric head architecture: while MQA maintains h distinct query heads, it uses only a single
shared head for both keys and values. Specifically, the input sequence X is first projected into a
single key-value pair using two weight matrices Wi_, Wy, € RP*4: K., V. = XWi_, XWy, The
resulting single KV pair is then replicated across all h query heads to form the final key and
value matrices K and V for computation. This replication can be expressed using the Kronecker
product ® (Broxson, [2006)): K,V = K; ® 11xp, Ve @ L1xp. where 114y, is a row vector of ones that

17

tiles the shared projections to all query heads. Another perspective is to view MQA as weight
sharing: K = (XWi,) ® 11xp = X (Wi, ® 114p), indicating that MQA essentially shares a single
projection matrix Wi, across all h heads. This design reduces the KV cache’s memory by a factor
of h compared to standard MHA. However, such aggressive weight sharing limits representational
capacity, as the model operates with only one KV head, which reduces performance relative to
MHA.

Dy, x hd Dy, x d D, xd

0. KeVe =12 Wy , XWe,, XW, . (23)
K7V:’Cc®11><hyvc®11><h~ (24)

» GQA. Grouped-Query Attention (GQA) (Ainslie et al., 2023) provides an interpolation between
MHA and MQA. The key idea is to partition the h total query heads into hj, distinct groups,
where hy, divides h. Within each group, the h/hj, query heads share a single key—value pair.
First, a compact set of hy, key and value heads, denoted K. and V., is obtained by projecting
the input X: K. = XWx_, V. = XWy_, where Wi, Wy, € RP*hrvd - To enable attention across
all h query heads, these hy, key—value heads are replicated within their respective groups h/hy,
times: K€ = K¢ ®@ 11y (h/hy,)s ¥V = Ve @ Lis(n/ny,)- GQA reduces the KV cache size by a factor of
h/hj, compared to MHA, delivering an effective balance between model quality and efficiency,
and has become the mainstream design choice in numerous large-scale language models, including
LLaMA (Dubey et al., 2024), Gemma (Team et al., 2024), Qwen (Bai et al., [2023)), and many others.

D, x hd Dy X hypd Dy X hypd
q, ’Cc, VC =X WQ 5 X WICC 5 X ch . (25)
K,V =Ke® Yixn/ng, Ve ® Lixn/hy, - (26)

» MLA. Multi-Head Latent Attention (MLA) (Liu et al., [2024a) reduces KV cache size primarily
through low-rank projection. Specifically, it caches a shared, down-projected low-rank KV state:
KN =v. = XW,%%WH € RV*™v and then up-projects it for computation: KV = /CéVWEp €
RNxdY 1y — VNWP € RV*4, The Rotary Position Encoding (RoPE) (Su et al., 2024b) can not be
applied to the low-rank compression because RoPE requires storing the up-projected KV states
instead of their compressed form, eliminating the intended memory savings. To incorporate positional
information alongside the aforementioned NoPE (no positional encoding) branch (Kazemnejad et al.|
2023), MLA adds an additional RoPE branch with a single-head key: X% = RoPE(X Wir) € RN xd™
which is replicated across h attention heads: Kt = IC§ ® 11xp, and then concatenated with the
NoPE branch within each head to form the final key state: K = [KN, KB ¢ RVxh(@"+d™) Tpe
query is also constructed via a low-rank projection to both reduce parameter count and match the
dimensionality of the keys. With these two branches, the KV cache size per token is reduced from
2hd to 1y + dFE.

q= [:UV?;goxnI;/g;N, RoPE(xI;;goxnI};g;R)]. (27)
KN — v, = XTWdewm (28)
KR — RoPE(X%’f/;?). (29)

T T P] (30)

Y= V. (31)

18

» MFA. Multi-matrix Factorization Attention (MFA) (Hu et al.,2024) builds on MQA by caching
a single KV head shared across all query heads. It introduces two enhancements to narrow the
performance gap between MQA and MHA under the same parameter budget. First, it increases the
per-head dimensionality d to improve the representational capacity of each head. Second, it applies
a low-rank factorization to the query projection: the initial down-projection weight Wg‘)wn € RDPmxd
is shared across heads, followed by an up-projection weight Wép € R4*hd that generates multiple
query heads. This design reduces the parameter cost of scaling h from roughly 2D,,d (for both
query and output projections) to approximately D,,d for the output projection alone.

Dy, xd dxhd

q= :BWSOWHWS). (32)

Dy, xd D, xd
Ko, Ve = XWE™, X W™, (33)
K,V =Ke®1ixpn, Ve ® 1ixp. (34)

» TPA. Tensor-Product Attention (TPA) (Zhang et al., 2025g), originating from low-rank
decomposition of matrices, generalizes the “repeating” operation used in MQA and GQA through a
learnable tensor product. In MQA and GQA, the repetition follows a fixed pattern: K = K, ® 1,
where 1 is a constant. TPA replaces this with a learnable formulation: K = K2 ® KB, where
K& e RN*hx1 encodes head-specific scaling factors and KF € RV*1%? encodes shared feature
components. Here, ® denotes the tensor (Kronecker) product along the last two axes. In this basic
form, the resulting I is a rank-1 approximation of the full-size key state in MHA. To increase
capacity, TPA introduces r such factorized components and averages them, producing a storage KV
of rank-r: K = % i_1 K; with each K; factorized as above. The same construction applies to V,
reducing the KV cache size to (rx + 1) (h + d) per token. The query projection is also formulated
via the tensor product, preserving symmetry in the overall structure.

Dy X rqh Dy X 1rqd

=z WS , X WQB (35)
=g, g [P dP (36)
1 Tq h:‘y 178(1‘
¢=—> ¢ oq (37)
Tq =1
Dy X rih Dy, X rd
KA KE=x W x we (38)
D,y X ryh Dy X 1yd
VAVE =X Wy . x wy (39)
1 A I . .
K,V = EZICZ‘” ® KB, 721};‘“ ® VB (40)
i=1 Ui=1

6 Sparse Attention

In this section, we present unified formulations for sparse attention, summarize representative meth-
ods along with their key properties, and discuss the implementation details of specific approaches.

19

Table 4: Summary of sparse attention methods.

Reduce Training
Category Method LLM KV Storage DIT Freo

Q\

StreamingLLM (Xiao et al., 2024b)
DiTFastAttn (Yuan et al| 2024)
SampleAttn (Zhu et al}, [2024)
MoA (Fu et al} [2024)

Pattern DuoAttention (Xiao et al.l, [2025)
Based

NN

Radial Attention (Li et al., [2025))
STA (IZhang et a1.|, |2025d|)
NeighborAttn (IHassani et al.L |2023al)

PAROAttn (Zhao et al., [2025

SpargeAttn (Zhang et al, 2025b)
H20 (IZhang et al.L |2023|)
InfLLM (Xiao et al.| [2024a)

FlexPrefill (
SparQAttn (Ribar et al.,
LokiAttn (Singhania et al, [2024)
SeerAttention (]Gao et al. |2024|)
Retrieval Attn (Liu et al, 2024b)

Dynamic | FPSAttention (Liu et al| 2025)
Sparse

N N N N N R N N N SR

X X N o

—

*x X

CHAI (IAgarwal et al. |2024I)
Quest (Tang et al., 2024)
MagicPig (IChen et al.L |2024b|)
DraftAttn (Shen et al., 2025
HashAttn (Desai ct al, 2025
XAttention (Xu et al|2025)
VSA (IZhang et al.L |20256b
SparseVideoGen2 (jYang et al.L |2025bl)
TidalDecode dYang et al.L |2024al)
LessIsMore (Yang et al., [2025a,

NN

A N N TN N N N N I T N N e N N N I T T SR NI NI N S EEN
M X XX X X X XN X XN XN X XN XX XN XX XX X XN N X X
R TN N N S N S S N R S T T T T T T Y RN N N N N SR SO SR N ¥

<N % S o

<
>
>
EN

° Mark o in the training-free column indicates that the method requires training a subset of
parameters rather than the entire model.
1 MoBA and VMoBA can be used without training, though performance may drop.

20

6.1 Overall Framework

The attention map P = Softmax(QK " /v/d) exhibits inherent sparsity, as the softmax operation
often creates many values approaching zero (Deng et al., 2024). Sparse attention methods exploit
such sparsity to accelerate attention by two steps. First, it constructs a sparse mask M, which
determines whether to compute or skip specific elements in the attention map P. Second, it computes
attention only for the parts corresponding to the sparse mask M.

P = Softmax(M + QK" /Vd). (41)
O=PV. (42)

Where M is an N x N matrix whose elements are either 0 or —oo. M; ; = 0 specifies that both the
attention score QZ-KJT and its corresponding output F; ;V; should be computed, while M; ; = —oo
indicates these computations should be skipped. There are two distinct categories of sparse attention
methods based on how the sparse mask is generated:

1. Pattern-based method relies on predefined sparsity patterns derived from empirical
observations, where the positions of —oc entries in M follow fixed geometric shapes (e.g., a
sliding window shape).

2. Dynamic sparse attention computes the sparse mask M adaptively during runtime
based on some input-dependent functions (e.g., M; j = —oo if pool(Qi)pool(KjT) < 7 for a
threshold 7, where pool(-) could be mean pooling over tokens).

Sparse FlashAttention. Sparse attention needs FlashAttention for efficiency, with its sparsity
pattern matching FlashAttention’s block size. Implementing sparse FlashAttention is intuitive: we
can just skip certain block matrix multiplications of Q); K JT and ﬁ”Vj according to the sparse mask
M, accelerating the attention computation. We formulate sparse attention based on FlashAttention
as follows.

Definition 1 (Sparse FlashAttention). The computation rules for sparse FlashAttention based on
the masks are defined as follows:

M@j = —o0 if M[Z X bq : (Z + 1) X bq”j X bpy - (j + 1) X bkv] = —00. (43)
QiK;r, f’iijj are skipped if M, ; = —o0. (44)

6.2 Preliminaries of Sparse Attention

LLM prefilling and decoding. As discussed in Section for LLM prefilling, attention
computation speed is the primary latency bottleneck. The goal of sparse attention in this context is
to omit as many block matrix multiplications between QK and PV as possible. For LLM decoding,
the main bottleneck is the read—write overhead of the KV cache between global memory and shared
memory. Here, sparse attention primarily aims to minimize the size of the KV cache, i.e., reducing
the I/O of K and V. Most sparse attention methods designed for language models accelerate both
prefilling and decoding, as increasing the number of —oo entries in M directly improves speed.

21

Reduce KV storage. Although most sparse attention methods reduce KV cache 1/0 in decoding,
not all reduce its memory storage. In general, most pattern-based methods can effectively save KV
storage because the KV cache requires incremental updates for adjacent queries during decoding. If
the sparse mask shape varies significantly across queries, it introduces considerable cache update
overhead, making reducing the KV cache difficult.

DiT. Diffusion transformer models (Peebles & Xie, [2023)), commonly used for image and video
generation, often adopt vision transformers as the backbone. As discussed in Section [2.4.1] attention
computation speed is the primary bottleneck.

Training-free property. In Table 4| the training-free attribute indicates whether a method
requires model training: approaches are marked as not training-free if they involve training model
parameters or auxiliary models; otherwise, they are considered training-free.

Table [4| summarizes sparse attention methods based on their sparse mask M (pattern-based or
dynamic), whether they need to train a model, and applicability to language models and diffusion
transformers. The following subsections provide detailed introductions to each method.

6.3 Pattern-based Sparse Attention

» StreamingLLM. Standard dense attention struggles with quadratic complexity and fails
beyond the pre-training length, while simple window attention (Beltagy et al. 2020) collapses once
initial tokens are evicted from the KV cache. StreamingLLM (Xiao et al. 2024b)) identifies a key
phenomenon called the attention sink, where a few initial tokens consistently receive a significant
portion of attention scores, regardless of their semantic content. The failure of window attention
is a direct result of evicting these crucial attention sink tokens. StreamingLLM proposes a simple
and efficient framework that preserves the KV states of the attention sinks while maintaining a
rolling cache of the most recent tokens. This training-free approach enables stable performance on
sequences of infinite length while reducing the per-token computational complexity to O(L) for a
KV cache of fixed size L.

» DitFastAttn. DiTFastAttn (Yuan et al.;2024) is a post-training acceleration method, addressing
computational redundancy in DiT models (Peebles & Xie, [2023) through three dimensions. First,
it employs window attention (Beltagy et al., [2020) with residual caching to to reduce redundant
computation in the spatial dimension. Specifically, at a specific timestep r, both the full attention
O, = Attention(Q,, K,,V,) and the local window attention W, = Window Attention(Q,, K,,V;)
are computed. The difference between these two outputs is computed as ’residual’ R, = O, — W,..
Then for the following few steps ¢, it use window attention Wy = Window Attention(Qy, K¢, Vi) and
the cached “residual” R,, to computed the output O, = W; 4+ R,.. Secondly, due to the attention
outputs of adjacent timesteps being highly similar, it caches the output of the first step among a
sequence of steps with similar attention outputs, and reuses it for the subsequent ones, reducing
redundant computations along timesteps. Thirdly, Classifier-Free Guidance (CFG)(Ho & Salimans,
2022) performs two forward passes at each step: one conditional and one unconditional—whose
attention outputs are often highly similar. Thus, it reuses the attention output from the conditional
pass for the unconditional one, effectively halving the attention computation in these instances.

» SampleAttn. SampleAttn (Zhu et al.,[2024)) proposes a training-free adaptive structured sparse
attention for LLM prefilling. SampleAttn identifies two sparsity patterns: (1) a local window pattern

22

that captures recent context, and (2) a column stripe pattern that represents key global information.
The method approximates full attention by dynamically combining these two structured patterns for
each attention head. To capture the local window pattern, SampleAttn attends to a fixed percentage
of adjacent tokens, allowing the window size to scale with the sequence length. To identify the
crucial column of the attention map without computing the entire attention score, SampleAttn
employs an two-stage process: it first samples a set of query tokens and calculates a partial attention
score matrix Ss with the key tokens; then, based on Ss, it selects the most relevant key and value
tokens to perform sparse attention. SampleAttn reduces prefilling latency by up to 2.42x compared
with FlashAttention while maintaining over 99% of baseline accuracy across benchmarks.

» MoA. MoA (Fu et al.l 2024)) leverages the inherent heterogeneity and elasticity of attention
distribution across attention heads and input lengths in LLMs. Building upon the uniform
sliding-window attention approach of StreamingL.LM (Xiao et al., 2024b|), MoA optimizes different
window-lengths tailored for each attention head and input length. MoA formulates it as an offline
search over elastic rules, where each rule defines how window-length scales linearly with input
length N via the relation a + SN, where a and [control the base attention span and its growth
rate, respectively. Optimal values for these hyperparameters are identified using a gradient-based
profiling method and multi-objective optimization under average density constraints across intended
input lengths. With the optimized window lengths, MoA significantly enhances retrieval accuracy
by 1.5-7.1x compared to StreamingLLM. It also boosts decoding throughput by 6.6-8.2x over
FlashAttention2 while maintaining minimal performance degradation.

» DuoAttention. DuoAttention (Xiao et al., [2025)) identifies two types of attention heads in
LLMs: retrieval heads and streaming heads. Retrieval heads require full attention to capture globally
relevant context, while streaming heads mainly focus on recent and initial tokens (attention sinks),
allowing for partial attention and reduced KV cache. To differentiate attention head types and apply
appropriate masks, DuoAttention introduces a learnable gate a € [0, 1] for each head, combining full
and streaming-masked attention outputs as attn = « - full_attn 4+ (1 — «) - streaming_attn. The
gate values are optimized by minimizing the mean-squared error between the last hidden states of
the full-attention model and the DuoAttention model, with an additional weighted L penalty on «,
(3" |a]), to promote sparsity. At inference time, heads with lower « values are treated as streaming
heads, selected based on a specified sparsity quantile. DuoAttention achieves up to 2.55x prefilling
and 2.18x decoding speedups, and reduces inference memory by 2.55x in long-context settings.

» Sparse VideoGen. Sparse VideoGen (Xi et al., |2025) proposes a training-free sparse attention
framework for video diffusion transformers, aiming to reduce the cost of full 3D attention over
long video sequences. Given input @, K, V', Sparse VideoGen aims to classify the heads into either
spatial-heads or temporal-heads, which focus on spatially-local tokens and temporally-local tokens,
respectively. The corresponding sparse attention mask is defined as Mgpatial and Miemporal, Where
Mgpatia1 consists of a diagonal sliding window and a first-frame sink, and Miemporal consists of
multiple slanted stripes. The classification is achieved via a lightweight online profiling algorithm.
For each attention head h;, a small subset of tokens (1%) is randomly sampled to compute the
MSE between the full attention output O and two sparse approximations. The final mask M}, is
set to either M Zpamal or M fbemporal accordingly by comparing the MSE between the golden output
and the output after applying the sparse attention mask. After mask assignment, Sparse VideoGen
applies static layout transformations to the temporal heads, enabling efficient computation under

23

the selected sparse pattern. Sparse VideoGen achieves up to 2.3x speedup on video generation
tasks.

» Radial Attention. Radial Attention (Li et al., [2025) introduces a static sparse attention
mask with O(N log V) complexity, enhancing both training and inference speeds of video diffusion
transformers. The method is motivated by the “Spatiotemporal Energy Decay" phenomenon, which
states that both attention compute density and attention scores decrease in the attention map
when the spatial and temporal distance between tokens increases. The method partitions the
attention map into exponentially widening temporal bands, where the compute density halves with
each step from the diagonal. Within each frame-to-frame attention block, a diagonal window with
exponentially decreasing width is maintained. Moreover, the minimum unit of the sparse attention
map is set to 128 x 128 block to ensure efficient execution on modern hardware. Radial Attention
also guarantees lightweight fine-tuning like LoRA (Hu et al. 2022) for context extension of video
diffusion models, as it efficiently preserves the computations of the important token relations. The
method accelerates default-length video generation of leading video diffusion transformers (e.g.,
Wan 2.1, HunyuanVideo) by up to 1.9x without tuning, while bringing up to 4.4x training cost
reduction and 3.7x inference speedup for up to 4x longer video generation.

» STA. Sliding Tile Attention (Zhang et al., [2025d) accelerates video diffusion transformers by
overcoming the computational inefficiencies of conventional 2D and 3D sliding window attention
mechanisms. Although sliding window attention reduces FLOPs through locality enforcement,
its GPU efficiency is hindered by mixed attention blocks containing both masked and unmasked
entries, which disrupt the blockwise computation pattern required by FlashAttention. Sliding Tile
Attention addresses this limitation by shifting the attention operation from the token level to the
tile level, partitioning the 3D input into fixed-size spatio-temporal tiles and ensuring that each
attention block is either fully dense or fully empty. This design eliminates masking overhead and
enables highly efficient GPU execution. Implemented atop FlashAttention3 (Shah et al.l 2024) and
ThunderKittens (Spector et al., [2024), Sliding Tile Attention achieves up to 10.45x acceleration in
attention kernel execution and 2.98x end-to-end inference speedup over FlashAttention-3. Sliding
Tile Attention supports both training-free and fine-tuned configurations. In the training-free setting,
it automatically calibrates per-layer, per-head window sizes using a small prompt set, attaining
58% sparsity and 1.8x end-to-end speedup. In the fine-tuned setting, fixed sparse masks can be
optimized to further improve throughput; for example, 91% sparsity yields a 3.5x speedup with
negligible degradation in VBench (Huang et al., 2024)) scores.

» NeighborAttn. Neighborhood Attention (Hassani et al.,2023a) introduces a pixel-wise sliding
window attention that localizes each query’s attention span to its immediate spatial neighbors. In
contrast to Swin transformer (Liu et al., |2021), which employs non-overlapping windowed attention
and relies on shifted windows to enlarge the receptive field, Neighborhood Attention preserves
translational equivariance and naturally expands the receptive field without manual shifting. This
design achieves linear time and space complexity while preserving locality bias, thereby bridging
the gap between convolutional networks and self-attention architectures. For practical deployment,
Neighborhood Attention is implemented through its NATTEN library (Hassani et al., [2023b)) with
custom CUDA kernels, achieving up to 40% speedup and 25% memory reduction compared to Swin
attention. Based on this mechanism, Neighborhood Attention demonstrates strong performance

24

across classification, detection, and segmentation tasks, outperforming Swin (Liu et al., 2021]) and
ConvNeXt (Liu et all 2022) under comparable parameter and computational budgets.

» PAROAttn. PAROAttention (Zhao et al., [2025) proposes a simple yet effective pattern-
aware token reorder technique to transform the diverse and scattered attention values into unified
hardware-friendly block-wise patterns. It observes that seemingly diverse visual attention maps
consist of multiple “diagonal lines” all represent “local aggregation” along a particular dimension
in 3D space. For example, for a video tensor of shape [Ngame, W, H], locality along the W axis
produces tokens in the attention map spaced equally by H, and conducting local aggregation
between them produces multiple “diagonal lines” in the attention map. Therefore, permuting the
token order from [Ngame, W, H] to [Nframe, H, W] converts these multi-diagonal lines into a regular
block-wise structure. This, in turn, enables a simple threshold-based block-sum scheme to derive the
attention pattern. Enlightened by the empirical evidence that visual attention patterns generalize
across different conditions, it adopts a static sparsity scheme, where the attention patterns are
determined offline. PAROAttention follows the concept of hardware-software co-optimization by
aligning the locality of visual feature extraction (numerical locality) with the locality of hardware
computation (memory and computation locality). It designs a comprehensive suite of efficient
CUDA implementations to minimize overhead and maximize efficiency.

6.4 Dynamic Sparse Attention

» SpargeAttn. SpargeAttn (Zhang et al., |2025b) proposes a training-free, all model-applicabile
sparse attention. The method has two stages to perform sparse attention. In Stage-1, SpargeAttn
selectively compresses Q; and K; whose tokens have high similarity to one token by mean pooling.
Then, SpargeAttn computes a compressed attention map P using the compressed) and K. Finally,
SpargeAttn selectively compute {QinT, P, ;V;} for those pairs (i, j) where {P[i, 5]} accumulates a
high score in the compressed attention map. For those non-self-similar blocks, as a good presentation
token for the whole block is hard to find, SpargeAttn chooses to always compute attention related
to the non-self-similar blocks. In Stage 2, SpargeAttn further identifies the small enough values
in the attention map during the online softmax process. If all values in 1513 are close enough to
zero, the f’i’jVj will be negligible and can be omitted. If max(rowmax(S; ;) —m; ;) is small enough,
then f’w = exp(S; ; — m; ;) are close to 0, allowing skipping the f’m'Vj. Lastly, since quantization
operations and sparse operations are orthogonal, sparse computation can be directly applied to
SageAttention. SpargeAttn could accelerate diverse models, including language, image, and video
generation models.

» H20. H20 (Zhang et al., 2023) proposes a training-free method that maintains a constant KV
cache size during decoding through dynamic token eviction. Let S denote the set of cached token
indices (e.g., S = {1,2,4,5,...}). For each token j € S, they define its importance score as the
sum of attention probabilities from all subsequent tokens: Fj; = Z?:j Py, where n is the current
sequence length. Tokens with high scores are termed "Heavy Hitters" (H2). Once the cache reaches
capacity k, each new decoding step evicts the least important token ¢ = argmin;c gF; while adding
the new token S <— SU {n} \ {t}, maintaining exactly k cached tokens. H20 balances retaining
both heavy hitters and recent tokens to preserve generation quality. On OPT (Zhang et al., [2022)

25

models, H20 achieves accuracy comparable to full attention while delivering 3x latency reduction
compared to FlexGen (Sheng et al., 2023).

» InfLLM. While StreamingLL.M (Xiao et al., 2024b) enables infinite-length inference, its sliding
window leads to global information loss. Xiao et al.| (2024a) propose InfLLM, which augments
StreaminglLLM’s attention sink I and local window L with retrieval from a global KV cache. The
global cache is partitioned into blocks { By, ..., B LN/b J} of size b. For each block B;, the top-t1 tokens

T; selected by cumulative local window attention scores F'(j) = Z{i;”_l P;;, are averaged to create
a block representative k; = % ZjeTi k;j. During decoding, each query computes scores S, = ql;:;r with
all block representatives and retrieves the top-tz blocks to form context C ={I, L, B;,,- -+, Bi,, }

for final attention computation. InfLLM extends context to 128K on Mistral and Llama-3 with
100% needle-in-a-haystack accuracy, achieving 1.5x speedup over full attention by computing on
fixed-size |I|+|L|+t2b context length. Building upon this, InfLLM v2 (Team et al., 2025) introduces
a trainable sparse attention that accelerates both prefilling and decoding. It improves the block
selection process by replacing the selection of representative tokens with fine-grained “semantic
kernels”. These kernels are constructed via mean pooling, a design that eliminates the token-level
memory access bottleneck of the original method.

» Mlinference. Minference (Jiang et al., |2024)) introduces an offline search-based dynamic
sparse attention to accelerate long-context LLM inference in the prefilling stage. It comprises three
stages: (1) offline pattern search, (2) dynamic sparse mask prediction, and (3) dynamic sparse
computation. First, each attention head searches for its optimal pattern from A-shape (Xiao et al.,
2024b)), vertical-slash (Jiang et al., 2024) , or block-sparse. Vertical-slash denotes an attention pattern
concentrated on specific tokens (vertical lines) and tokens at fixed intervals (slash lines). Second,
MInference generates the dynamic sparse mask online. For example, in the vertical-slash pattern,
MInference computes the attention scores between the queries and all keys/values to identify the
top-K vertical and slash lines: M = RowTopK (softmax (Q[—W JKT/ \/&)), where RowTopK selects
the top-K entries in each row. For block-sparse attention, the mask is obtained by computing
the attention weights between average-pooled queries and keys: Q = pool(Q), K = pool(K),
M = RowTopK(softmax (Qf(T/ \/ﬁ)), where pool refers to average pooling over tokens. Finally,
dynamic sparse attention is computed over the resulting mask at the stripe level (Zheng et al., 2023)
(for vertical lines) and block level (for slash lines and block-sparse).

» FlexPrefill. FlexPrefill (Lai et al. 2025) proposes a context-aware dynamic sparse attention
that adapts both the sparse pattern and sparsity ratio at runtime. It consists of two steps: (1)
Pattern selection by different context, which chooses between block-sparse and vertical-slash (Jiang
et al., 2024) attention by measuring the Jensen—Shannon divergence (Menéndez et al., 1997)

between dense and block-sparse attention scores: p = softmax (pool(Q[—W :])pool(K)T/\/@,
Aplock = sumpool (softmax (Q[—W :]KT/\/g)), and Djs(a,aplock) = +/JSD(a||apock), where

pool/sumpool indicate average/sum pooling over tokens; and (2) Dynamic sparsity ratio determi-
nation, which generates the attention mask by applying a row-wise top-P threshold until a target
recall is met. For example, in vertical-slash pattern, M = RowTopP (Softmax (Q[_W:]K T/ \/&)),
where RowTopP selects the biggest entries which accumulate to a threshold in each row.

» SparQAttn. SparQAttention (Ribar et al.,2024) is designed to alleviate the memory bandwidth
bottleneck during the decoding phase of large language model inference. Given a query vector ¢
in a decoding step, SparQ first selects the r largest-magnitude components of ¢; along the hidden

26

dimension and slices both ¢; and the Key cache K along these dimensions. Note that r is a pre-
determined hyperparameter and is usually set to 64. This produces a low-dimensional approximation
of the attention scores S without retrieving the full key vectors. Based on this approximated
attention score, SparQ identifies the top-k tokens that are most important to attention computation.
SparQ finally extracts the Keys and Values at these k tokens to calculate the approximated attention
output. The final output is a weighted combination of the partial attention result and a precomputed
mean value vector v, allowing SparQ to do mean value reallocation. This hybrid attention design
enables significant reductions in bandwidth cost with minimal quality degradation.

» LokiAttn. LokiAttention (Singhania et al., [2024)) is a training-free sparse attention method for
LLM decoding. LokiAttn consists of two main stages: (1) Offline Principal Component Analysis
(PCA) (Abdi & Williams|, [2010) calibration: Loki first generates a set of key vectors from calibration
prompts for a target LLM. It then applies PCA to the headdim d of key tokens, reducing the d to
d,. This PCA projection matrix is computed offline and stored. The analysis shows that a small
number of d (e.g., around 80, despite a full dimension of 128) can explain 90% of the information
for key tokens. (2) Low-Rank inference with top-k selection: During inference, instead of computing
attention scores using the key tokens in N x d, Loki performs the following steps: It projects the
query and key tokens into N X d,. using the pre-computed PCA matrix. An approximate attention
score matrix is calculated in d,. This step is computationally efficient due to the lower dimensionality.
Based on these approximate scores, LokiAttention identifies and selects the top-k most relevant
tokens (e.g., 12.5-25% of the total tokens) from the KV-cache. The real P matrix is then computed
using the selected subset of top-k tokens in N x d. This approach allows Loki to achieve significant
speedups (up to 45% over standard implementations) with minimal degradation in model accuracy.

» HashAttention. HashAttention (Desai et al.,|2025)) is a sparse attention algorithm that leverages
learned mappings to accelerate long-context LLM inference. The motivation for HashAttention
is framing the task of identifying important tokens as a Maximum Inner Product Search (MIPS)
problem. To approximate this MIPS problem efficiently, HashAttention uses a trained linear
projection to encode both queries and keys into compact, bit-level signatures. The distance between
these binary signatures can be computed with an XOR operation. In this compressed space, a
smaller distance between a query’s signature and a key’s signature indicates that the keys are
considered important tokens. During inference, it finds the most relevant tokens for a given query by
calculating the Hamming distance between their respective signatures. Attention is computed only
on this small subset of selected tokens. By using learned, independent mappings, HashAttention
achieves high recall of important tokens with very low auxiliary memory overhead (e.g., 32 bits per
token).

» SeerAttention. SeerAttention (Gao et al., [2024]) introduces a learnable block-sparse attention
by inserting a gated linear projection g before the RoPE (Su et al., 2024a) module to predict
block-wise sparse mask M: Q = RoPE(g(pool(Qpre—rope))), K = RoPE(g(pool(Kpre_rope))), M =
RowTopK (Softmax (QK T/ \/&)), where Kpre-rope denotes the attention keys before applying RoPE,
pool refers to average pooling over tokens, and RowTopK selects the top-K entries in each row. The
parameters of the gated linear projection g are trained to minimize the KL divergence (Joyce, 2011])
between SeerAttention and full attention outputs on long-context post-training data, allowing the
model to retain sparsity while closely approximating full attention behavior.

» Retrieval Attn. RetrievalAttention (Liu et al., 2024b) is a training-free, CPU-GPU co-execution
dynamic sparse attention for accelerating LLM decoding. It leverages the sparsity of attention

27

by introducing a vector index (Malkov & Yashunin, [2018) to efficiently retrieve top-K KV cache.
However, due to the distribution mismatch between queries (@) and keys (K), directly building
the index on K and retrieving with @) requires scanning 20-50% of K to maintain high recall. To
address this, RetrievalAttention constructs an out-of-distribution (OOD)-aware vector index (Chen
et al.l [2024a) on the CPU by offloading the KV cache during prefilling. During decoding, ¢; is
transferred from GPU to CPU to retrieve the top-K keys, which are then used to compute attention
scores on the CPU and merged with a small portion of GPU-computed local attention. This hybrid
CPU-GPU design reduces decoding complexity to sub-O(n) and achieves up to 5 tokens/s for 8B
LLMs with a 128K context on a single RTX 4090.

» FPSAttention. FPSAttention (Liu et al., 2025) is a training-aware FP8 quantization and
structured sparsity co-design built on Sliding Tile Attention (STA) (Zhang et al., [2025d)) for
accelerating video diffusion models. It applies FP8 quantization and sparsity over the same 3-
dimensional tiles, aligning with GPU- and FlashAttention-friendly block patterns for optimal
hardware efficiency. For fine-tuning, FPSAttention integrates with SageAttention2 (Zhang et al.|,
2024al), using SageAttention2 in the forward pass and FlashAttention in the backward pass, while
adopting a denoising-step-aware adaptive strategy to dynamically adjust sparsity according to the
timestep. This design achieves up to a 7.09x speedup in the attention kernel and a 4.96 x end-to-end
generation speedup at 720p resolution, without compromising generation quality.

» NSA. Native Sparse Attention (NSA) (Yuan et al., 2025) is a trainable sparse attention method
that accelerates attention with both algorithmic design and hardware optimizations. Algorithmically,
NSA splits attention into three branches: (1) compression: K and V are blocked and compressed
via a learnable MLP (Haykin, [1994)), forming K and V. Attention between ¢, and K,V yields O°™P;
(2) selection: top-k scores in the attention map from the compression branch select blocks for a
sparse mask M;. Sparse attention is then computed, producing O%¢; (3) sliding window: attention
between ¢; and K;_y:t, Viw:¢ within a sliding window of length w gives O"™. These outputs are
gated and summed for the final result O. For hardware, NSA uses GQA (Ainslie et al., 2023)) and
aggregates importance scores across grouped query heads, therefore sharing KV blocks within the
same group and reducing cache fetches, which boosts GPU efficiency. NSA also implements kernels
using the Sparse FlashAttention approach for optimized contiguous memory access. These strategies
give NSA a 6 to 11.6x speedup over full attention, while achieving even better results on general,
long-context, and reasoning tasks.

» MoBA. MoBA (Lu et al., [2025), inspired by the Mixture of Experts (MoE) (Shazeer et al.,
2017)) mechanism, proposes a dynamic Mix of Block Attention. It evenly splits input K and V into
n blocks and mean-pools each block into one token, forming compressed sequences K and V of
length n. For each query g¢;, attention scores are computed with K and V, and the top-k blocks are
selected to form the sparse mask M;. Sparse attention is then computed. For causal attention, the
block containing the ¢-th token (i.e., the current block of ¢;) is always included and causal masking
is applied. On a 1M-token prefilling task, MoBA achieves up to 6.5x speedup over full attention
with similar benchmark performance.

» VMoBA. VMoBA (Wu et al., 2025) extends MoBA to Video Diffusion Models (Ho et al., 2022).
While MoBA targets only temporal locality, VMoBA also leverages spatial and spatio-temporal
locality by dividing input K and V along temporal (1D), spatial (2D), or spatio-temporal (3D)
axes in cycles across attention layers. Sparse attention is then computed as in MoBA. To further
improve performance: (1) VMoBA selects top-k values across the entire sparse attention matrix

28

QK" to better capture important queries; (2) it introduces a threshold 7 per head, selecting the
top elements that cumulatively reach 7 instead of using a fixed top-k. These optimizations yield a
2.92x FLOPS and 1.48x latency speedup in training, and a 2.40x FLOPS and 1.35x latency speedup
in inference, while maintaining similar video generation quality to full attention.

» CHAI. CHAI (Agarwal et al., 2024) is a training-free and efficient algorithm that groups the
attention heads with high correlation to save both attention computations and memory usage during
LLM inference. The method’s key insight is that the output of different attention heads can deliver
nearly identical attention outputs over the full sequence, which yields great redundancy. Moreover,
such redundancy lies mainly in later layers. To turn this observation into a real speedup, deciding
the number of clusters and the membership of each attention head has become crucial. To address
this, CHALI first runs a quick offline clustering on tiny samples to decide the cluster number for each
layer. During runtime, it dynamically conducts the clustering by assigning every head to one of
the representative clusters based on the attention outputs of the first five tokens. When computing
attention, only the representative head in each cluster keeps its () and K, while the rest reuse
its results. CHAI reduces both computations and K,V storage, achieving up to 1.73x inference
speedup and 21.4% saving in KV cache memory size with minimal sacrifice in model accuracy.

» Quest. Quest (Tang et al., 2024)) is a KV cache selection algorithm free of training that focuses
on fast and memory-efficient long-context LLM inference. Quest’s motivation is that only a tiny
subset of the KV cache dominates attention scores in long-context LLMs, and the criticality of such
important tokens depends on the current query token. Quest splits the KV cache into fixed-size
pages and keeps track of the upper and lower bounds of the attention weights, leveraging them to
approximate the highest possible attention in the page. At runtime, only the Top-k pages with
the highest estimated attention scores are loaded to perform the sparse attention operation, thus
significantly reducing memory consumption while accelerating the attention. Because the page
scores are query-aware, tokens that were previously unimportant can be recalled if the new query
values them, which allows Quest to surpass previous query-agnostic algorithms in terms of attention
recall rate. Across long-context tasks, Quest delivers up to 7.03x faster self-attention and 2.23x
end-to-end speedup with negligible reduction in accuracy.

» MagicPig. Standard Top-K sparse attention fails in aggregation tasks where attention is
not highly concentrated, leading to significant quality degradation. To address this, MagicPig
(Chen et al., 2024b) proposes that sampling from the attention distribution provides a more
accurate, unbiased output. MagicPig uses Locality Sensitive Hashing (LSH) (Backurs et al., 2019) to
approximate the ideal sampling distribution. The final output is computed with a modified Softmax
that incorporates the LSH collision probabilities ug: 0 = Softmax (lﬂg — log uS) Vs, where S
is the set of indices sampled via LSH. MagicPig also features an efficient system co-design that
partitions the workload: GPU executes compute-bound, low-memory tasks like linear projections
and the LSH random projections for the query. CPU leverages its large DRAM to store the entire
KV cache and pre-built LSH hash tables, performing the final sparse attention computation on the
sampled subset. This training-free algorithmic and system-level design overcomes the GPU memory
bottleneck, while maintaining high accuracy and efficiency on extremely long contexts.

» DraftAttn . DraftAttn (Shen et all 2025) is a training-free block sparse attention method for
video diffusion transformers(DiT). The method consists of three main steps: (1) low-resolution
draft attention computation, (2) permutation for structured sparsity, and (3) full-resolution sparse
attention with original order restoration. In the low-resolution draft attention computation step,

29

the method first applies down-sampling via average pooling to each spatial patch in the latent
space, generating a low-resolution draft query (Q) and draft key(K): Q, K € RTHW)xd _y O K ¢
RT-H/WW/w)xd where h,w is height and width patch size in the latent space. The draft attention

map is then computed using these down-sampled representations: Pgyapp = Softmax (%) , exposing

spatial and temporal redundancy. During permutation for structured sparsity, @, K, and V are
permuted based on Pyrag. This permutation groups tokens in each patch contiguously in memory,
aligning patch region-level sparsity with token-level computation and enabling hardware-friendly
execution. In the full-resolution sparse attention step, the block mask(M) is constructed from the
Pyrayt by selecting the highest score with a predefined ratio r. Block sparse attention computation
at full resolution was performed with M. After the attention computation, the original order of
tokens is restored using an inverse permutation. To ensure efficiency, Draft Attention uses aggressive
downsampling (e.g., 8x16 pooling kernel) to minimize the computational overhead of draft attention.

» XAttention. (Xu et al) 2025) proposes using the sum of antidiagonal values (i.e., from
the lower-left to upper-right) in the attention matrix as an importance metric for attention block
selection. To efficiently compute this antidiagonal sum, X Attention rearranges the (Q and K matrices
by grouping segments of the sequence dimension together while expanding the feature dimension
accordingly. By reversing the order of elements within segments of one of the matrices before
grouping, the product of the rearranged @) and K effectively captures the sum of the antidiagonal
elements. XAttention achieves up to 13.5x speedup in attention computation while maintaining
accuracy comparable to full attention.

» VSA. Video Sparse Attention (Zhang et all 2025€) is a trainable, data-dependent sparse
attention mechanism designed for video diffusion models, and is compatible with diffusion model
distillation. In contrast to post-hoc methods that apply sparsity only at inference, Video Sparse
Attention introduces a hierarchical two-stage attention structure that operates natively during both
training and inference. In the first stage, the video latent is partitioned into (4, 4,4) spatio-temporal
cubes, and coarse cube-to-cube attention is applied to identify Top-K critical regions. These regions
are then used to construct a block-sparse attention mask. In the second stage, fine-grained token-
level attention is computed only within the selected blocks, and the outputs from both stages are
fused via learnable gating. This design preserves compatibility with block-sparse GPU kernels and
achieves 85% of FlashAttention3’s MFU (Shah et al 2024)). Under a comparable compute budget,
Video Sparse Attention consistently outperforms fixed-pattern sparse baselines. On Wan2.1-1.3B,
it reduces training FLOPs by 2.53x and accelerates inference by 1.7x, without compromising
generation quality.

» Sparse VideoGen2. Sparse VideoGen2 (Yang et al., [2025b) is a training-free sparse attention
designed to accelerate video generation. The method comprises three main steps: (1) semantic-aware
permutation, (2) centroid-based top-p selection, and (3) dynamic block sparse attention. In the
semantic-aware permutation step, the method applies k-means clustering to the query (@) and key
(K) tokens to group semantically similar tokens. Based on the clustering results, it permutes @, K,
and V to ensure a continuous memory layout. During centroid-based top-p selection, the method
estimates the attention scores between clusters by using their centroids, weighting these scores by
cluster size. For each query cluster, it selects key clusters in descending order of their weighted
attention score until the cumulative score surpasses a predefined threshold p. In the dynamic block
sparse attention step, the model computes the attention only for the selected cluster pairs (blocks),
while completely skipping the computation for all other blocks. To further improve performance,
Sparse VideoGen2 utilizes a centroid cache, which leverages centroids from the previous diffusion

30

step to accelerate K-means convergence. It also employs a customized sparse attention kernel
that supports variable block sizes to maximize Tensor Core utilization. Sparse VideoGen2 shows
significant acceleration in video generation tasks.

» TidalDecode. TidalDecode (Yang et al. 2024a) accelerates LLM decoding with position
persistent sparse attention, based on the observation that the most attended tokens show strong
overlap across layers within a decoding step. Instead of running full attention in every layer, it
begins with a few full attention layers, then periodically selects the top-k important tokens, and lets
the remaining layers reuse these token indices to reduce computation and memory cost. To avoid
errors from repeated sparse updates, it introduces a cache-correction step that occasionally refreshes
the cache with full attention. By exploiting this spatial coherence of token importance, TidalDecode
achieves up to 2.1x faster decoding while maintaining performance close to full attention.

» LessIsMore. LessIsMore (Yang et al., 2025a) introduces a training-free sparse attention
for large reasoning models. The authors find that important tokens show strong overlap across
attention heads and that recently generated tokens consistently remain critical . Leveraging these
observations, LessIsMore adopts a unified selection strategy that globally ranks tokens across all
heads and reserves a fixed proportion of its budget for recent tokens. This design preserves essential
context, improves efficiency, and avoids common errors in sparse methods. As a result, LessIsMore
reduces the number of attended tokens by up to half without loss, speeds up decoding, and maintains
generation length and accuracy comparable to full attention.

7 Linear Attention

In this section, we provide unified formulations for linear attention, offer a detailed summary of
representative methods and their unique attributes, and examine the implementation aspects of
individual algorithms.

7.1 Overall Formulation

Linear attention decreases the complexity from O(N?) to O(N) by decomposing the softmax function
and using the combination property of matrix multiplication. It can be formulated as:

0=9(Q)((K)'V), 0,QKVeRV* (45)

where ¢ is a kernel function applied row-wise to queries and keys. When applied to non-autoregressive
tasks, it can be computed directly using Equation However, when applied to autoregressive
tasks, due to the causal relationships between tokens, the attention computation is formulated as:

or = ¢(ar) (ki) "vi). (46)

i=1

Here, the subscript t(or i) represents the time step t(or i). To avoid the costly computation
of historical Zf;} k:ZT v; during inference, a hidden state H; is maintained to store the historical
Zf;% sz v;, and recurrently updated. The hidden state and the output is computed as follows:

Hy=H; 1+ ¢(kt)TUt-

ot = ¢(qt) H. 47)

31

However, compressing all historical information into a fixed-size hidden state inevitably leads to
information loss. Forget gate Gy and select gate G are introduced to mitigate this problem by
forgetting historical information in H;_; and selecting current information in k,' v;. The hidden
states update with gates can be formulated as:

H=GY o H 1 +GY ok v (48)

Here we omit the kernel function ¢ for simplicity; G® represents the gates at time t. We call G ¥
and G input-dependent if they rely on the attention computation input, and input-independent
otherwise.

Linear attention methods can be classified by their hidden state update method. The first three
categories rely on direct computation of H;: (1) Naive Linear Attention: Linear attention without

gates, i.e., both G;t) and th) are fixed as 171, (2) Linear Attention with a Forget Gate: Only
th) is fixed as 171, while the forget gate Ggf) is predefined or input-dependent, and (3) Linear

Attention with both Forget and Select Gates: both Ggf) and th) are predefined or input-dependent
rather than fixed as 171. In these models, the hidden state H; at each step is calculated directly
from the previous state and the current input. In contrast, the fourth category, (4) Test-Time
Training (TTT) (Sun et al., [2024), adopts an optimization-based approach. TTT re-conceptualizes
the hidden state Hy, not as a computed value, but as a set of learnable parameters known as fast
weights (Schlag et al., 2021b). The key distinction is that these fast weights are updated via gradient
descent (Robbins & Monro, [1951) during both training and inference. This continuous learning
process sets TTT apart from conventional architectures, where model parameters are frozen during
inference. We will discuss each of these categories in detail in the following subsections: Naive linear
attention in Section linear attention with a forget gate in Section linear attention with both
forget and select gates in Section and TTT in Section [7.7]

7.2 Preliminaries of Linear Attention without Gates

As mentioned in Section there are three basic forms of linear attention: the parallel form, the
recurrent form, and the chunkwise form. The parallel form is the most fundamental implementation
and has two variants: a linear parallel form and a quadratic parallel form. The chunkwise form is a
hybrid that combines aspects of the recurrent and quadratic parallel forms. In modern models, the
application of these forms is task-dependent. For non-autoregressive tasks, the linear parallel form
is typically applied during both training and inference. In contrast, for autoregressive tasks, the
chunkwise form is employed for training, while the recurrent form is used for efficient inference.

7.2.1 Linear Parallel Form for Non-Autoregressive Tasks

The linear parallel form is optimal for Non-Autoregressive (NAR) settings where causality is not a
constraint. It is defined as:

0=6(Q) (o(1)V). (49)

The computation first calculates a global key-value state, ¢(K) 'V, which is then queried by all
positions in parallel. This allows for maximum throughput during NAR training and inference. For
example, the output for a query @, can be computed as:

_ 0(Qn) S5 0(K)) TV
$(Qn) i1 0(K;)T

(50)

n

32

7.2.2 Recurrent Form for Autoregressive Inference

For autoregressive inference, linear attention can be reformulated into a highly efficient recurrent
form. At each timestep t, the output o; depends only on the current query ¢; and an accumulated
state H;:

Hy=Hi1+¢k) ve , o= é(q)Hy. (51)

where Hj is initialized as a zero matrix. This approach offers significant advantages over standard
attention’s Key-Value (KV) cache: (1) The state H; has a fixed size, whereas the KV cache grows
linearly with the sequence length. (2) Each generation step is an O(1) state update, independent of
the sequence length t.

7.2.3 Chunkwise Form for Parallel Autoregressive Training

During autoregressive training, there is a fundamental tension between computational complexity
and hardware parallelism. Two naive approaches present a dilemma: (1) Quadratic parallel form:

Applying a causal mask M to the parallel form, as in O = (¢(Q)¢(K)" ® M)V, is parallelizable but
forces the computation of the N x N matrix, reverting to an inefficient O(N?) complexity. (2) Pure
recurrent form: The complexity is theoretically O(N), but its sequential nature makes training on
GPUs prohibitively slow as shown in (Schlag et al., [2021a).

The chunkwise form provides a practical hybrid solution for this problem. It divides the sequence
into fixed-size chunks, processing each chunk in N? parallel form while using a recurrent mechanism
to carry information between them. For the i-th chunk, the computation combines an intra-chunk
parallel calculation with an inter-chunk recurrent update. Given a causal mask D within a chunk:

Ointra,i = (Qy) K ﬁ © D)V (Intra-chunk Parallel). (52)
Ointer,i = Qi Hi—1 (Inter-chunk Recurrent). (53)
O; = Ointrai + Ointer,i (Final Chunk Output). (54)
H;, = K[:ﬁ Vig + Hi (Next State Update). (55)

This hybrid approach effectively balances parallelism and causality, enabling efficient autoregressive
training on modern hardware with a complexity of O(NCd + Nd?) for a chunk size C.

7.3 Preliminaries of Linear Attention with Gates

We now elaborate on the computational forms from Section detailing their implementation
with gates.

7.3.1 Recurrent Form

The formulation of recurrent form with gates is defined as follows:

Hy=GY o H 1 +GY ok v (56)
O = tht' (57)

The forget gate Ggf) controls how much of the previous state H;_; is retained. Concurrently, the

select gate th) determines how the new information k;r v; 18 incorporated into the new state H;.

Finally, the output o; is computed by applying the current query ¢; to this updated state.

33

7.3.2 Quadratic Parallel Form

When considering the gates, it is necessary to consider the cumulative effect of the gates along the
sequence. The overall formulation is given by Equation |5§| (see the Appendix for the derivation).

= (QKT o M)V © A,

~ ~ N~ . 58
where Q=Q0A K=K/A0A V=V/AGB. (58)

Here, A and A represent the cumulative forget effects along the sequence, and fl, B represent the
cumulative select effects along the sequence. In this formulation, the queries, keys, and values are pre-
scaled by the cumulative gate values. This allows the attention-like matrix QK | to correctly model
the sequence’s causal and gated dependencies in a parallel manner. However, its quadratic time
complexity results in inefficient training. Consequently, many modern architectures instead favor
the chunkwise form, which sacrifices some parallelism to achieve lower computational complexity.

7.3.3 Chunk-wise Formulation for Gated Linear Attention

Incorporating the gates results in a more detailed chunk-wise formulation defined by Equation [59a]
through Equation [59df(see Appendix for the derivation).

Hy = (G © Hy—y)) + k\[,T]‘A/[z]
Ojivy) = O + OS],
Offiﬁ = (Q[i+1]K[i+1} © M)V[Hl] © Afjgq)- (59c
Ol = (Quisny © ALH})H[i] © B[Tﬂ- (59d
The chunk-level hidden state H;) is updated usmg Equation where (; represents the cumulative

forgetfulness of the previous chunk. The terms K, [and V[Z] are aggregated from keys and values,

where each key value pair are first modulated by select gate (at,bt) and then decayed by the
remaining forget gates within the chunk.

The output for the (i 4+ 1)-th chunk, Oli41], is decomposed into two components: an intra-chunk

output O[Ifﬂa]‘ and an inter-chunk output O[I;‘fﬁ O%ﬂlﬁ is computed within the current chunk using
the quadratic parallel form. O%meﬁ incorporates historical information from the previous chunk via

the recurrent state Hp;. The decay matrices A[+1] and B[Tﬂ apply the appropriate decay based on
the relative positions of queries.

7.4 Naive Linear Attention

When both forget gate Gy and select gate G are 171 (i.e., they apply no transformation), the
method is categorized as Naive Linear Attention. Table [5] shows some typical naive linear attention
methods. All the complexities shown in the table are for the training phase. In this table, all
methods use a recurrent form for inference, with time complexity of O(Nd?) and space complexity
of O(Nd).

» Linear transformer. Linear Transformer (Katharopoulos et al., |2020) decomposes the
softmax(QK) into a kernelized dot product ¢(Q)¢(K) " and utilizes the matrix product associativity

34

Table 5: Summary of naive linear attention methods.

Forget | Select Time Space
Method Gate | Gate Complexity | Complexity Form
Linear transformer T 9 2 .
(Katharopoulos et al., |2020) 11 1 O(Nd) O(N?) quadratic
CHELA .)) .
(Liu et all [2024d) 11 1 O(N=d) O(N?) | quadratic
Lightning Atten T 9 .
(Qin et all [2024) 11 1 |ONCd+Nd) O(Nd) chunkwise
SLA ‘ 171 ‘ 1 ‘ O(N?%d) ‘ O(N?) ‘ quadratic
(Guo et al., [2024) ‘ ‘ ‘ O(NCd—i— Ndz) ‘ O(Nd) ‘ chunkwise

11 in the table represents a 1 x d vector of all ones.

to reduce the time complexity to linear. The attention output for a single query ¢; is formulated as:

O:sb(qi)T(;,v:m(kj)v;)
o (5 elk)

(60)

By first computing Z;-V:l (;S(kj)v]—-r = ¢(K) TV, the overall complexity becomes O(Nd?). For autore-
gressive tasks, this method maintains two state matrices, H; and Z;, to compute attention output,
and can be formulated as
Hy=Hi 1+ Qﬁ(k‘t)vt—r
Zy = Zy—1 + ¢(ky)
o — ¢(gr) " H
ola) " Zy

(61)

This state-based update reduces the memory complexity during inference from O(Nd) to a constant
O(d?), eliminating the need for a growing KV cache.

» SANA. SANA text-to-image framework (Xie et al., [2025) is an application of naive linear
attention in a non-autoregressive task. SANA replaces all standard quadratic self-attention of
the DiT architecture (Peebles & Xiel [2023)) with linear attention. SANA is well-suited for this
optimization because it processes the entire image representation at once and does not require a
causal mask. Specifically, SANA employs ReLLU Linear Attention (Katharopoulos et al.| |2020)).
This method reformulates the attention calculation by first computing two shared terms: Hy =

Zévzl ReLU(K;)"V;, Zn = Zé\le ReLU(K;)". The final output is computed as O,, = %.

» CHELA. CHELA (Liu et al} [2024c) leverages a tiling strategy inspired by FlashAttention (Yang
et al., 2024b) to achieve a hardware-efficient implementation of linear attention. To enhance training
stability, it incorporates short-long convolution operation to before compute @, K matrices. This
operation is defined as Z = K (gbsﬂu (fS(X))), K; and K, represent long and short convolution
kernels, respectively. ¢gy, is the SiLU activation function (Ramachandran et al., [2017)), and X is

35

the current token representations. Then, @, K,V,O are computed as follows:

Q=007+ p,
K=a,60Z+ ﬁk
_ (62)
V= d)silu(XWU + bv)
O = Norm (Q(KTV)) ® G,
Here, a, s, by are all learnable parameters, and G, = ¢giiu(ZW, + by). functions as an input-
dependent filter on the final attention score, leveraging the global information from the convolutions to

refine the final output. For inference, CHELA employs: H; = Ht_1+KtT Vi and oy = Norm(q H) ©G,.
For training, it uses chunkwise form as introduced in Section

» LightningAttention. Lightning Attention (Qin et al. 2024) adopts the chunkwise form for
hardware-efficient implementation, formulated as follows:

Hy=H; 1+ K, V,.
ot = (/) © M) Vi
Oper = QuHy 1.

Ot = Ointra + Ointer-

63
64

65

)
)
)
66)

(
(
(
(

The attention computation is split into intra-chunk computation and inter-chunk computation. Onta
is computed using the quadratic parallel form. O™ incorporates information from all previous
blocks. The hidden state H; is updated using the recurrent form. To minimize I/O cost, during each
iteration, only the current blocks (Qy, K¢, Vi) are loaded from global memory to shared memory. H;
is also maintained and updated entirely within shared memory. As a result, LightningAttention
achieves a constant training speed and memory footprint, regardless of the input sequence length,
significantly improving the efficiency of linear attention for language modeling.

» SLA. Unlike prior linear attention methods that employ complex kernel functions, Simplified
Linear Attention(SLA) (Guo et al., |2024) uses simpler ReLU as its kernel function. And the
computation of SLA can be formulated as Equation

Hy=H; 1+ ¢(Kt)TV;t
Ly =Zi1+ QZ’(Kt)T

o = X9 ey

P(Qr)Z
where ¢(x) = ReLU(z) (Nair & Hinton, [2010), and DWC represents depth-wise convolution (Chollet,
2017) used to ensure model captures local contextual patterns. This design effectively balances

performance with computational efficiency, achieving significant latency reductions by leveraging
hardware-friendly operations (ReLU and DWC).

(67)

» QT-ViT. QT-ViT (Xu et al., [2024)) approximates the softmax function with a second-order
Taylor expansion (Dass et al., [2023]), achieving better performance while maintaining efficiency. The
similarity function is computed as:

(a.k) (0. k)*

) ~1

(68)

36

However, the quadratic term (g, k)? prevents the decomposition into two separate kernel functions.
To overcome this, QT-ViT leverages the Kronecker product ® (Broxson) 2006), using the property
that (a,b)? = (K,(a), K. (b)), where K, (x) = vec(r ® z) vectorizes the outer product of the vector
with itself. However, this decomposition increases the feature dimension from d to d?, resulting in a
time complexity of O(Nd®). Thus, a fast and compact approximation of the Kronecker product is
introduced. Instead of computing all d? cross-product terms, it was empirically found that using only
the d self-multiplication terms {z? fl:l is sufficient to effectively represent the quadratic information.
This leads to a compact kernel function, K, (¢(z)), which is a concatenation of three components:
the approximated quadratic terms, the linear terms, and a constant, each scaled by a learnable
parameter (o, 3,7). The function is defined as:

R, (4(x)) = concat (a B | S, 7) . (69)

By using K, (¢(z)), the output vector has a manageable dimension of 2d + 1. This allows QT-ViT
to achieve O(Nd?) complexity while effectively capitalizing on the higher-order information.

Table 6: Summary of linear attention with forget gate only.

Forget Select Time Space

Method Gate Gate | Complexity Complexity Form
Retnet | - | | O(N?d) ‘ O(N?) | quadratic
(Sun et al., |2023) ‘ 71'1 ‘ 1 ‘ O(NCd + Nd?) ‘ O(Nd?/C + Nd) ‘ chunkwise
(Yang iLﬁ 2023) a1 1 | O(NCd+ Nd*) | O(Nd*/C + Nd) | chunkwise

RWKV4 .

(Peng et all, 2023) e 1 O(Nd) O(d) parallel
(Pen§ 21751%2024) w'l 1 | O(NCd+Nd?*) | O(Nd*/C) | chunkwise
(PengRZ\t]I;lV 62024) w1 1 | O(NCd+Nd®) | O(Nd*/C) | chunkwise

RWKV7 (diag(w;)— .

1 O(NCd + Nd? O(Nd?/C hunkwis
(Peng et al., [2025)) re(ar © re))* (+) (/O) chunkwise

GSA T 2 2 .
(Zhang et al 2024b) a; 1 1 | O(NCd+ Nd?) | O(Nd?/C + Nd) | chunkwise
(ChouM:ttfjA%M) a1 1 O(NCd+ Nd?) | O(Nd?/C + Nd) | chunkwise

11 in the table represents a 1 x d vector of all ones.
2 The blue gates are input-dependent and the black gates are input-independent.

7.5 Linear Attention with a Forget Gate

A method is categorized as linear attention with a forget gate if its hidden state update uses
Ggf) # 171 while th) =171. Table @ shows some typical linear attention methods with a forget

37

gate. All the complexities shown in the table are the complexities of the training phase. In the
table, all methods use the recurrent form for inference.

» RetNet. RetNet (Sun et al., [2023) introduces a forget gate y1'1, along with a chunkwise
representation to enable efficient training on long sequences. For inference, RetNet use the recurrent
form: Hy = yHy_1 + k:tT vt, 0 = q¢Hy. The decay factor + controls how much of the past information
is retained at each step. The chunkwise form balances parallelism and recurrence. The intra-chunk
,yn—m’ n Z m
0, n<m
The matrix D combines causal masking with an exponential decay based on the relative distance
between tokens. Finally, the chunkwise form can be formulated as:

output is calculated in quadratic parallel form, Oﬁtra = (QKT ® D)V, Dy = {

Hyy = Kpj(Vig © ¢) + 9 Hi—1, where ¢ =7 (70)
ORS) = (QHi—1) © & where & ; = 7. (71)
Opir1) = O + O (72)

This hybrid form allows for parallel processing within local blocks for speed while efficiently
summarizing global information recurrently to save memory.

» GLA. Gated Linear Attention(GLA) (Yang et all 2023) employs an input-dependent and
vector-valued forget gate and introduced a hardware-efficient implementation with two variants.
The gate, ay € (0, 1)dk, is computed dynamically from each input token z;, allowing different feature
dimensions to decay at different rates. This fine-grained control contrasts with models like RetNet,
which use a fixed, input-independent scalar decay. For inference, GLA use the recurrent form: H; =
(o] 1)OH;_1+k] vs, 00 = q;Hy. The gate vector oy is generated via a low-rank linear layer, followed by

1
a sigmoid activation and a scaling term 7: oy = o (2:W2W2 + b,) 7. By defining a cumulative gate
product b; = H§:1 «j, the output can be written in quadratic parallel form, which is used to compute

the intra-chunk output of chunkwise form: Otﬁrﬁ = (((Q[i+1} ® Biit1]) (IB([[ZLI]])T) oM) Viit1)»
where M is the causal mask, and B is the matrix of stacked b; vectors. Due to potential numerical
instability from the cumulative product, this form is often computed in log space. Finally, the
chunkwise form can be formulated as follows, where matrices I' and A are derived from the per-token

oy values and manage the decay across chunks:

Higp = (011) © i + (Kjj0) © D)) Vi (73)
Oi”flf}lr] - (Q[i+1] © A[i+l])H[i]- (74)
Oty = O] + O T)- (75)

GLA also provides an I/O-aware implementation with two variants: (1) The non-materialization
version computes chunks sequentially, using fast shared memory to carry the hidden state Hj,
between chunks without writing to slower global memory. It is memory-efficient with O(Nd) training
space complexity but lacks sequence-level parallelism. (2) The materialization version first runs the
inter-chunk recurrence and stores all intermediate states H, in global memory. Subsequently, the

38

outputs Oy, for all chunks are computed in parallel. This boosts parallelism at the cost of increased
space complexity O(Nd?/C + Nd).

» GSA. GSA (Zhang et al, b) uses a input-dependent forget gate oy to selectively manage its
hidden states(K; and V;). It can be expressed as:
K; = Diag(ey) - Kj—1 + (1 — o) Tky,
V; = Diag(ay) - Vie1 + (1 — o) "oy, (76)
o =V, softmax(K, q).
where «; is the forget gate obtained via a linear transformation followed by a sigmoid activation
with a damping factor (Qin et al., 2023). For parallel and hardware-efficient training, this recurrence

is reformulated as a two-pass GLA, where the output of the first pass becomes the query for the
second pass after a softmax non-linearity:

H =(a/1) 0 H- | + k[(1—a),
O; — thtla
Hl=1Tow) @ HE 4 (1—ag) Ty,

0; = Softmax(o},) H.

(77)

This two-pass structure allows GSA to leverage existing optimized chunkwise training algorithms,
ensuring both high performance in recall-intensive tasks and efficient computation.

» MetaLA. MetalLA (Chou et al.l 2024)) proposes three critical conditions for an optimal linear
attention: (1)dynamic memory, (2)accurate approximation of softmax attention, and (3) parameter
efficiency. Based on these principles, they propose MetalLA, which can be formulated as:

Hi=a/ 10 H 1+ (1—ay) vy,

] (78)
o = qeHy + Uaug(Qt(waug ® (1 - Oét)) Ut)-

Here, a? is derived from the current input z;, which allows the model to selectively forget or
remember information based on the input context. Notably, MetaLLA replaces the traditional k;

with 1 — oy, enhancing parameter efficiency. aug(q) (wgfug ® (1 — a!))Tv;) enhances the current

token’s attention to itself. A learnable parameter wgug controls the extent of this self-augmentation.
MetaLLA employs a chunk-wise parallel form during training for hardware efficiency and a recurrent
form during inference. A short convolution layer can be introduced before attention computation to

further enhance local interactions.

» LogLinearAttention. Log-linear Attention (LLA) (Guo et al., 2025) employs a hidden state
whose size grows logarithmically with the sequence length. It hierarchically partitions the past
context using a Fenwick tree (Fenwick] 1994) structure (binary indexed trees). For any position ¢ in
the sequence, this divides the history [0,¢) into a logarithmic number. This partitioning scheme
creates finer-grained segments for recent history and progressively coarser segments for more distant
history, allowing a finer representation of recent context. Due to this implicit down-weighting of
older information, we categorize it as a linear attention variant with a forget mechanism, even
though it lacks an explicit gate.

Instead of compressing the entire past into a single hidden state, LLA maintains a hidden state
Ht(l) for each bucket i, and the hidden state of each bucket is an add of the past kv pairs in the

39

bucket. The final output is then computed by taking a weighted sum of the attention scores from
all these hidden states, which can be formulated as:

L—1
o= ANq HD. (79)
=0

Here, Ht(l) is the hidden state that summarizes the information for the segment at level /.)\gl) is a
learned, input-dependent scalar weight that modulates the contribution of the hidden state from each
level [, allowing the model to adaptively focus on the most relevant time scales. This approach allows
for a more expressive representation of context while maintaining an efficient O(N log N) training
time and O(log N) memory cost during decoding. LLA is not included in Table @] as its multi-state
architecture does not conform to the single-state update formulation used for categorization.

» RWKYV Series . Receptance Weighted Key Value (RWKYV) series models replace the self-
attention in the standard transformer with the time-mixing module. This time-mixing module is
a variant of gated linear attention, with linear time complexity and constant memory usage in
inference. In the following, we introduce representative RWKYV models with improvements for the
time-mixing module.

RWKV-4. The update rule and output of time-mixing module in RWKV-4 (Peng et al., 2023)
can be formulated as:H; = ¢ ™% ® Hy_y 4 " @ v, Hy = e © H,_; + €*, 0y = o(q;) © (Hy/H,).
Here, all operations are performed element-wise. Here H; and H,; are vectors in R?. The time-decay
parameter w is a learnable, input-independent vector. The forget gate e~ applies a channel-wise
decay rate to each feature of the hidden state. During inference, the time complexity of RWKV-4 is
O(Nd) and the space complexity is O(d).

RWKYV-5 & 6. RWKV-5 & 6 (Peng et al., [2024)) expand the hidden state of the time mixing
module to a matrix H;. The hidden state of H; of RWKV-5 is updated as:

H, = H,_1diag(w) + v/ k; (80)

where diag(w) is a diagonal input-independent forget gate. RWKV-6 (Peng et al., |2024)) changes
the forget gate in Equation [80|into a input-dependent one: Hy = H; 1diag(w;) + vtT kq.

RWKV-7. RWKV-7 (Peng et al., 2025) further enhances the expressive capability of the time
mixing module through a more general forget gate. The state update is defined as follows: H; =
(diag(wy) — ke(oy © Ke))Hy—1 + vy ky. Here, rky = ky @ €, oy = sigmoid(MLP(xy)), and ¢ is a learnable
parameter and x; is the current token representation. The term w; is an input-dependent, vector-
valued decay parameter. This formulation of forget gates is a diagonal matrix plus a rank-one
matrix. This special algebraic structure allows a hardware-efficient chunkwise form.

7.6 Linear Attention with Forget and Select Gates

Table [7] shows some typical linear attention methods with forget and select gates. All complexities
shown in the table are the complexities of the training phase. For inference of Mamba, the time
complexity is O(Nd?), the space complexity is O(d). All other methods use the recurrent form for
inference, with time complexity of O(Nd?) and space complexity of O(Nd).

» RODIMUS. RODIMUS (He et al., 2024) aims to solve the attention dilution problem, which

is common in linear attention methods that compress historical information into a fixed-size state

40

Table 7: Summary of linear attention methods with forget gate and select gate.

ot | T | S [mme T Sme
(H}e}(st]?;ll.\,/[;)s%) exp(—g; © 7)1 (773 |O(NCd+ Nd?)|O(Nd?/C + Nd)|chunkwise
(Schla]:g)ilttzsetz 021a) I — Bikik, Bt O(Nd?) O(d?) sequential
(Yan];eelttiffg% s | T Ak 8, O(NCd + N2 O(d) chunkwise
(Gu &I\C/I aDI:sazoz?)) exp(A4) A(ﬁ)A)—il1)(6)2)1(5’ O(Nd) O(Nd) piiiﬂel
(Yanil?afl;??gf) 211) o (I — Bekek/) By O(NCd + Nd?) O(d) chunkwise
(Daolvglgi?z 02d) Ay 1 O(Nd?) O(Nd) chunkwise

! The blue gates are input-dependent and the black gates are input-independent.
21 in the table represents a 1 x d vector of all ones.
3 T in the table represents a d x d identity matrix.

using a constant decay factor. This can lead to the loss of crucial long-range dependencies. The
RODIMUS can be formulated as:

gt = C(@eWy + by) (
7 = o(xWr + by) (82
(
(

Hy = (eXp<—gt © Tt)Tlm) O Hi 1+ ((gtTt)TBt) © (kf vy),

op = qH+d Oy
x; = short__conv(X)[t] (85

To enhance local interactions and non-linearity, input tokens are processed by a short convolution
layer and transformed into z. Input-dependent select gate g; and temperature gate 7 dynamically
regulate information retention and forgetting. d; is a learnable parameter that allows x} to directly
influence the output. This special input-dependent gate design makes RODIMUS achieve significant
accuracy compared with the previous linear attention models when using the same size hidden
states. To improve efficiency, RODIMUS uses the recurrent form for inference and the chunkwise
form for training.

» DeltaNet. The purely additive update rule (H; = H;_1 + v;k;) of standard linear attention
struggles to edit or discard outdated information. This limitation can lead to “key collisions” when
the sequence length surpasses the key dimension, degrading the model’s associative recall capabilities.
To resolve this, DeltaNet (Schlag et al., [2021a)) replaces the additive update with the error-correcting
delta rule, which updates H; by minimizing the error between the predicted value (Hy_1k;) and
the target value (v;). This update rule implicitly combines forgetting and selection, and can be
formulated in the following two forms:

Ht = Ht—l — Bt(Ht—lkt — Ut)k;r. (86)
Hy = Hy 1 — 2%, +orVE, . (87)

41

Here, f3; is a learnable, input-dependent “writing strength”. The influence of the old value (v9!d =

H;_1k;) is deleted from H; and the influence of the new value (v°" = v;) is written back. However,
this training algorithm is inherently sequential, which makes it hardware-inefficient and difficult to

scale on modern parallel processors like GPUs.

» DeltaNet2. DeltaNet2 (Yang et al., 2024c]) was introduced to address the inefficiency caused by
the sequential training of DeltaNet. The key insight is a memory-efficient reparameterization of the
delta rule recurrence. By viewing the update as a generalized Householder transformation (Bischof
& Van Loan, 1987)), it becomes possible to use the compact WY representation (Bischof & Van Loan)
1987)) to compute the cumulative state updates. This reparameterization enables a chunkwise form.
The chunk-level recurrence is given by:

Hy) = Hy + Uy — Wig Hp)) T Ky (88)
O = QuHpy + (QuKf © M) (U — WigHp). (89)

where U and W, are pseudo-value matrices derived within the chunk. This algorithmic break-
through makes it efficient to train DeltaNet more parallelizable at a large scale.

» Mamba. Mamba (Gu & Daol [2023) enhances structured State Space Models (SSMs) (Gu
et al., [2021)) with a selection mechanism, making them content-aware. The Mamba and Transformer
architectures are distinct. Consequently, Mamba does not employ the Query-Key-Value (QKV)
mechanism. Instead, Mamba directly maps an input x; to an output y;. The core idea of Mamba is
a time-varying linear recurrence that updates a hidden state h; based on an input xy:

hy = Athi—1 + By, (90)
yr = Cihy. (91)
A, = exp(AA). (92)
B; = (AtA) Hexp(AA) —T) - A¢By. (93)

A key innovation is that the state transition (A;) and input projection (B;) matrices are input-
dependent and vary at each timestep, allowing the model to selectively focus on or ignore inputs.
These discrete parameters are generated from continuous parameters through a discretization rule,
enabling Mamba to dynamically manage information flow. For hardware-efficient implementation,
Mamba uses a special form called parallel scan. This selection mechanism allows Mamba to
dynamically adjust its focus on or ignore parts of the input sequence.

» Mamba2. Mamba2 (Dao & Gu, 2024) builds upon the original Mamba by introducing the
structured State Space Duality (SSD) framework, which reveals a connection between SSMs and
attention. The recurrent formulation of Mamba2 is a specialized version of the selective SSM:
he = Aihi—1 + Biay, ye = Cihe. Mamba2 computes the SSM through a block decomposition of its
matrix form. This method combines a quadratic, attention-like computation for diagonal blocks
with a linear, recurrent computation for off-diagonal blocks, significantly improving training speed.
The projections for the SSM parameters (Ay, By, C;) and the input z; are all computed in parallel
at the beginning of the block. This is analogous to the Q, K, V projections in Transformers and
facilitates more efficient tensor parallelism.

» gDeltaNet. gDeltaNet (Yang et al. [2024b) addresses the limitations of its predecessors—
DeltaNet’s (Schlag et al., 2021a)) slow memory clearance and Mamba2’s(Dao & Gu, [2024) uniform

42

decay. The core idea is the gated delta rule, which introduces an input-dependent gate that results
in the following state transition: Hy = Hy_1(c;(I — Bikik/)) + Bivik, . where B is the writing
strength. The gating term ay € (0, 1) achieves more flexible memory control. By setting a; — 0, the
model can rapidly erase the prior state, which is crucial during context switches. By setting oy — 1,
the update effectively becomes the pure delta rule, enabling precise modification of a single key-value
association while preserving all other information. This combination of adaptive memory clearance
and precise, targeted updates enables gDeltaNet to achieve a more robust memory management
system.

7.7 Test Time Training

LLM can compress a massive training set into weights through self-supervised learning (Zhao et al.,
2023)), and what linear attention does can also be viewed as compressing context into a fixed-size
hidden state. Inspired by this observation, Test Time Training (TTT) (Sun et al., 2024)) views the
hidden state H; as a set of online updated parameters to compress the context. The gradient of the
H,, is computed as follow:

C
9= Zv'c(th—l(kt)vvt)‘ (94)
i=1
Then the update rule of Hy is
Ht = Ht—l —Jg. (95)

The attention output o; can be finally computed as: o; = fm,(q:). Here fg, , and fm, are networks
with Hy_; and H; as their parameters respectively, £ is a loss function between fp, ,(k:) and value
v, commonly Mean Square Error, C' is the chunk size.

» TTT . TTT (Sun et al., [2024)) uses the Equation. and (95| to update hiddden states. TTT
develops two forms of fg,, TTT-Linear and TTT-MLP. The fg, of TTT-MLP is a two-layer MLP
with a nonlinear activation GELU (Hendrycks & Gimpel, 2016)) similar to Transformer. The nonlinear
activation strengthens the expressive ability of TT'T, but it makes TTT-MLP cannot be paralleled
on a GPU, thus infeasible in reality. The fg, of TTT-linear is a simple linear transformation:
fr,_, (k) = Hi_1k; and can be efficiently parallelized through chunk-wise algorithms proposed in
GLA (Yang et al., |2023)). The time and space complexity of TTT-Linear aligns with chunk-wise
linear attention methods.

» Titans . Titans (Behrouz et al., 2024) shares the same motivation as test time training. Different
from Equation , Titans (Behrouz et al., 2024)) further introduces momentum into the update
rule of Hy: Hy = (1 — oy)Hy—1 + My, My = m My — 6,g. Here oy € [0,1] is forget gate, n; is the
weight decay and 6; is the learning rate. Titans keeps the fp, a simple linear transformation as
TTT-Linear. Titans outperforms both full attention and modern linear recurrent models across
tasks, including language modeling, common-sense reasoning, genomics, time-series forecasting, and
needle-in-a-haystack retrieval.

» LaCT . LaCT (Zhang et al) 2025f) proposes a hardware-friendly method to make the test-
time training method more efficient on a GPU. TTT (Sun et all [2024) and Titans (Behrouz
et al., [2024)) both take a small chunk to update fast weights, i.e., every 16 to 64 tokens, resulting
in low utilization of the GPU. LaCT (Zhang et al., 2025f) introduces a much larger chunk size
of 4096 ~ 1 million tokens and make TTT more hardware efficient. Large chunk size enables
LaCT to use a more complex design of fy and update rule. LaCT uses SwiGLU-MLP (Shazeer|

43

2020) as the sub network fg, which consists of three weight matrix W = Wi, Wy, W3, and the
output is computed as: fg, (k) = Wa[SiLU(W1k;) © W3k;]. The loss function is dot product loss:
L(fu, ,(k),vr) = —fu, (k) v;. Naive update Equation 95 suffers from magnitude explosion
because of the accumulated memory of a large chunk. To improve stability and effectiveness, LaCT
develops a more robust weight update rule: H; = L2-Normalization(H;_; — Muon(g)) where g is
the gradient and Muon is a nonlinear optimizer (Jordan et al.). LaCT outperforms other modern
linear attention in various language modeling tasks.

8 Conclusion

In this survey, we have provided a systematic and comprehensive review of efficient attention methods,
categorizing them into hardware-efficient, sparse, compact, and linear attention methods. Each
category targets different aspects of the attention bottleneck, i.e., whether by optimizing low-level
I/0O and computation, exploiting sparsity, reducing KV cache memory usage, or reformulating the
attention to achieve sub-quadratic complexity.

44

References

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433-459, 2010.

Saurabh Agarwal, Bilge Acun, Basil Hosmer, Mostafa Elhoushi, Yejin Lee, Shivaram Venkataraman,
Dimitris Papailiopoulos, and Carole-Jean Wu. Chai: clustered head attention for efficient 1lm
inference. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Etienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series
of open language models, 2023. URL https://arxiv.org/abs/2311.16867.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation in
high dimensions. Advances in neural information processing systems, 32, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate, 2016. URL https://arxiv.org/abs/1409.0473.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

1z Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Christian Bischof and Charles Van Loan. The wy representation for products of householder matrices.
SIAM Journal on Scientific and Statistical Computing, 8(1):s2-s13, 1987.

Bobbi Jo Broxson. The kronecker product. 2006.

Meng Chen, Kai Zhang, Zhenying He, Yinan Jing, and X Sean Wang. Roargraph: A projected
bipartite graph for efficient cross-modal approximate nearest neighbor search. Proc. VLDB
Endow., 2024a.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiw preprint arXiv:2410.16179, 2024b.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019. URL https://arxiv.org/abs/
1904 .10509.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of
the IEEFE conference on computer vision and pattern recognition (CVPR), pp. 1251-1258, 2017.

45

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509

Yuhong Chou, M. Yao, K. Wang, Y. Pan, R.J. Zhu, J. Wu, Y. Zhong, Y. Qiao, B. Xu, and G. Li.
Metala: Unified optimal linear approximation to softmax attention map. Advances in Neural
Information Processing Systems, 37:71034-71067, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344-16359, 2022.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-context
inference. https://crfm.stanford.edu/2023/10/12/flashdecoding.html, 2023. [Online].

Jyotikrishna Dass, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng Wang, and Yingyan
Lin. Vitality: Unifying low-rank and sparse approximation for vision transformer acceleration
with a linear taylor attention. In 2023 IEEFE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 415-428. IEEE, 2023.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024.

Aditya Desai, Shuo Yang, Alejandro Cuadron, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica.
Hashattention: Semantic sparsity for faster inference, 2025. URL https://arxiv.org/abs/2412|
14468.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Peter M. Fenwick. A new data structure for cumulative frequency tables. Software: Practice and
Ezperience, 24(3):327-336, 1994. doi: 10.1002/spe.4380240306.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic
large language model compression. arXiv preprint arXiv:2406.14909, 2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Hayden Kwok-Hay So, Ting Cao, Fan Yang,
and Mao Yang. Seerattention: Learning intrinsic sparse attention in your llms. arXiv preprint
arXiv:2410.13276, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00596, 2021.

Han Guo, Songlin Yang, Tarushii Goel, Eric P. Xing, Tri Dao, and Yoon Kim. Log-linear attention.
arXiv preprint arXiv:2506.04761, June 2025. doi: 10.48550/arXiv.2506.04761. URL https:
//arxiv.org/abs/2506.04761. Submitted on 5 Jun 2025 (v1), last revised 25 Jun 2025 (v2).

46

https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://arxiv.org/abs/2412.14468
https://arxiv.org/abs/2412.14468
https://arxiv.org/abs/2506.04761
https://arxiv.org/abs/2506.04761

Jialong Guo, Xinghao Chen, Yehui Tang, and Yunhe Wang. Slab: Efficient transformers with
simplified linear attention and progressive re-parameterized batch normalization. arXiv preprint
arXiv:2405.11582, 2024.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEFE transactions on
pattern analysis and machine intelligence, 45(1):87-110, 2022.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention
transformer. In Proceedings of CVPR, pp. 6185-6194, June 2023a.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Natten: Neighborhood
attention extension. https://github.com/SHI-Labs/NATTEN, 2023b.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

Zhihao He, Hang Yu, Zi Gong, Shizhan Liu, Jianguo Li, and Weiyao Lin. Rodimus*: Breaking the
accuracy-efficiency trade-off with efficient attentions. arXiv preprint arXiv:2410.06577, 2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiw:1606.08415, 2016.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv:2204.053458, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. KVQuant: Towards 10 Million Context Length LLM Inference
with KV Cache Quantization. arXiv e-prints, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jingcheng Hu, Houyi Li, Yinmin Zhang, Zili Wang, Shuigeng Zhou, Xiangyu Zhang, Heung-Yeung
Shum, and Daxin Jiang. Multi-matrix factorization attention. arXiv preprint arXiv:2412.19255,
2024.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang,
Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark
suite for video generative models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 21807-21818, 2024.

Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. Dissecting the nvidia volta
gpu architecture via microbenchmarking. arXiv preprint arXiv:1804.06826, 2018.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv, abs/2310.06825, 2023. URL
https://arxiv.org/abs/2310.06825.

47

https://github.com/SHI-Labs/NATTEN
https://arxiv.org/abs/2310.06825

Huigiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference 1.0:
Accelerating pre-filling for long-context LLMs via dynamic sparse attention. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan. github. io/posts/muon, 6.

James M Joyce. Kullback-leibler divergence. In International encyclopedia of statistical science, pp.
720-722. Springer, 2011.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pp. 5156-5165. PMLR, 2020.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances in
Neural Information Processing Systems, 36:24892-24928, 2023.

Mikhail V Koroteev. Bert: a review of applications in natural language processing and understanding.
arXiv preprint arXiv:2103.11943, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. arXiv e-prints, 2023.

Xunhao Lai, Jiangiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=0f jIlbelrT.

Xingyang Li, Muyang Li, Tianle Cai, Haocheng Xi, Shuo Yang, Yujun Lin, Lvmin Zhang, Songlin
Yang, Jinbo Hu, Kelly Peng, Maneesh Agrawala, Ion Stoica, Kurt Keutzer, and Song Han. Radial
attention: O(nlogn) sparse attention with energy decay for long video generation. arXiv preprint
arXiv:2506.19852, 2025.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiw:2405.04434, 2024a.

Akide Liu, Zeyu Zhang, Zhexin Li, Xuehai Bai, Yizeng Han, Jiasheng Tang, Yuanjie Xing, Jichao
Wu, Mingyang Yang, Weihua Chen, Jiahao He, Yuanyu He, Fan Wang, Gholamreza Haffari, and
Bohan Zhuang. Fpsattention: Training-aware fp8 and sparsity co-design for fast video diffusion,
2025. URL https://arxiv.org/abs/2506.04648.

Di Liu, Meng Chen, Baotong Lu, Huiqgiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

48

https://openreview.net/forum?id=OfjIlbelrT
https://arxiv.org/abs/2506.04648

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Zicheng Liu, Siyuan Li, Li Wang, Zedong Wang, Yunfan Liu, and Stan Z Li. Short-long con-
volutions help hardware-efficient linear attention to focus on long sequences. arXiv preprint
arXiv:2406.08128, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. In International
Conference on Machine Learning, pp. 32332-32344. PMLR, 2024d.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran
He, Enming Yuan, Yuzhi Wang, Zhiqi Huang, Huan Yuan, Suting Xu, Xinran Xu, Guokun Lai,
Yanru Chen, Huabin Zheng, Junjie Yan, Jianlin Su, Yuxin Wu, Yutao Zhang, Zhilin Yang, Xinyu
Zhou, Mingxing Zhang, and Jiezhong Qiu. Moba: Mixture of block attention for long-context
llms. arXiv preprint arXiv:2502.13189, 2025.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEFE transactions on pattern analysis and
machine intelligence, 42(4):824-836, 2018.

Larry R Medsker, Lakhmi Jain, et al. Recurrent neural networks. Design and applications, 5(64-67):
2, 2001.

Maria Luisa Menéndez, Julio Angel Pardo, Leandro Pardo, and Maria del C Pardo. The jensen-
shannon divergence. Journal of the Franklin Institute, 334(2):307-318, 1997.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867, 2018.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning, 2010. URL https://api.semanticscholar!
org/CorpusID:15539264.

NVIDIA. Nvidia ampere architecture whitepaper. Technical report, NVIDIA.
URL https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

NVIDIA. Nvidia h100 tensor core gpu architecture, 2022.

NVIDIA. Cutlass: Cuda templates for linear algebra subroutines and solvers, 2025. URL https:
//github.com/NVIDIA/cutlass. Accessed: 2025-08-17.

NVIDIA Corporation. NVIDIA A100 Tensor Core GPU Architecture (Ampere Architec-
ture Whitepaper). https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf], 2020.

NVIDIA Corporation. CUDA C+/+4 Programming Guide (Release 13.0). https://docs.nvidial
com/cuda/cuda-c-programming-guide/, Aug 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

49

https://api.semanticscholar.org/CorpusID:15539264
https://api.semanticscholar.org/CorpusID:15539264
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.15048, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Xingjian Du, Teddy Ferdinan, Haowen Hou, et al. Eagle and finch: Rwkv with matrix-
valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
Jiaxing Liu, Janna Lu, William Merrill, et al. Rwkv-7" goose" with expressive dynamic state
evolution. arXiv preprint arXiv:2503.14456, 2025.

Zhen Qin, Songlin Yang, Weihan Sun, and Yuxuan Zhong. Hierarchically gated recurrent neural
network for sequence modeling. Advances in Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=PITCHk_w_B.

Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Various lengths, con-
stant speed: Efficient language modeling with lightning attention. arXiv preprint arXiv:2405.17381,
2024.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient LLM inference. In Forty-first International Conference on
Machine Learning, 2024.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathe-
matical Statistics, 22(3):400-407, 1951.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International conference on machine learning, pp. 9355-9366. PMLR, 2021a.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International conference on machine learning, pp. 9355-9366. PMLR, 2021b.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Noam Shazeer. Fast transformer decoding: Omne write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Xuan Shen, Chenxia Han, Yufa Zhou, Yanyue Xie, Yifan Gong, Quanyi Wang, Yiwei Wang, Yanzhi
Wang, Pu Zhao, and Jiuxiang Gu. Draftattention: Fast video diffusion via low-resolution attention
guidance, 2025. URL https://arxiv.org/abs/2505.14708.

50

https://openreview.net/forum?id=PITCHk_w_B
https://arxiv.org/abs/2505.14708

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094-31116. PMLR, 2023.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Benjamin F Spector, Simran Arora, Aaryan Singhal, Daniel Y Fu, and Christopher Ré. Thunderkit-
tens: Simple, fast, and adorable ai kernels. arXiv preprint arXiv:2410.20399, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024a.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024b.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yue Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
query-aware sparsity for efficient long-context llm inference. ICML’24. JMLR.org, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wentong
Chen, Xin Cong, Ganqu Cui, et al. Minicpm4: Ultra-efficient llms on end devices. arXiv preprint
arXiv:2506.07900, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziére, Naman Goyal, Francois Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jianzong Wu, Liang Hou, Haotian Yang, Xin Tao, Ye Tian, Pengfei Wan, Di Zhang, , and
Yunhai Tong. Vmoba: Mixture-of-block attention for video diffusion models. arXiv preprint
arXiv:2506.23858, 2025.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. arXiv preprint arXiv:2502.01776, 2025.

51

https://arxiv.org/abs/2302.13971

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 119638
119661. Curran Associates, Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/
paper/2024/file/d842425e4bf79ba039352da0f658a906-Paper-Conference. pdfl

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024b.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. In The International Conference on Learning Representations, 2025.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution text-to-image synthesis with linear
diffusion transformers. In The Thirteenth International Conference on Learning Representations,
2025.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. XAttention: Block
sparse attention with antidiagonal scoring. In Forty-second International Conference on Machine
Learning, 2025.

Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, and Emad Barsoum. Qt-vit:
Improving linear attention in vit with quadratic taylor expansion. Advances in Neural Information
Processing Systems, 37:83048-83067, 2024.

Lijie Yang, Zhihao Zhang, Zhuofu Chen, Zikun Li, and Zhihao Jia. Tidaldecode: Fast and accurate
llm decoding with position persistent sparse attention. arXiv preprint arXiv:2410.05076, 2024a.

Lijie Yang, Zhihao Zhang, Arti Jain, Shijie Cao, Baihong Yuan, Yiwei Chen, Zhihao Jia, and Ravi
Netravali. Less is more: Training-free sparse attention with global locality for efficient reasoning.
arXiv preprint arXiv:2508.07101, 2025a.

Shuo Yang, Haocheng Xi, Yilong Zhao, Muyang Li, Jintao Zhang, Han Cai, Yujun Lin, Xiuyu
Li, Chenfeng Xu, Kelly Peng, et al. Sparse videogen2: Accelerate video generation with sparse
attention via semantic-aware permutation. arXiv preprint arXiv:2505.18875, 2025b.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. arXiv preprint arXiv:2412.06464, 2024b.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024c.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customizable
attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.

52

https://proceedings.neurips.cc/paper_files/paper/2024/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Y. X. Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang,
and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse
attention. 2025. URL https://api.semanticscholar.org/CorpusID:276408911.

Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. DiTFastattn: Attention compression for diffusion transformer models.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Jintao Zhang, Pengle Zhang, Jun Zhu, Jianfei Chen, et al. Sageattention: Accurate 8-bit attention
for plug-and-play inference acceleration. In The Thirteenth International Conference on Learning
Representations, a.

Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageattention2:
Efficient attention with thorough outlier smoothing and per-thread int4d quantization. arXiv
preprint arXiw:2411.10958, 2024a.

Jintao Zhang, Jia Wei, Pengle Zhang, Xiaoming Xu, Haofeng Huang, Haoxu Wang, Kai Jiang,
Jun Zhu, and Jianfei Chen. Sageattention3: Microscaling fp4 attention for inference and an
exploration of 8-bit training. arXiv preprint arXiv:2505.11594, 2025a.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. arXiv preprint
arXiv:2502.18137, 2025b.

Jintao Zhang, Xiaoming Xu, Jia Wei, Haofeng Huang, Pengle Zhang, Chendong Xiang, Jun Zhu,
and Jianfei Chen. Sageattention2++: A more efficient implementation of sageattention2. arXiv
preprint arXiv:2505.21156, 2025c¢.

Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, and Hao
Zhang. Fast video generation with sliding tile attention. arXiv preprint arXiv:2502.04507, 2025d.

Peiyuan Zhang, Haofeng Huang, Yongqi Chen, Will Lin, Zhengzhong Liu, Ion Stoica, Eric Xing,
and Hao Zhang. Vsa: Faster video diffusion with trainable sparse attention. arXiv preprint
arXiv:2505.15389, 2025e.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan Sunkavalli,
William T Freeman, and Hao Tan. Test-time training done right. arXiv preprint arXiv:2505.23884,
2025f.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew C Yao.
Tensor product attention is all you need. arXiv preprint arXiv:2501.06425, 2025g.

Yu Zhang, Songlin Yang, Ruijie Zhu, Yue Zhang, Leyang Cui, Yigiao Wang, Bolun Wang, Freda
Shi, Bailin Wang, Wei Bi, et al. Gated slot attention for efficient linear-time sequence modeling.
2024. URL hitps://api. semanticscholar. org/CorpusID, 272593079, b.

93

https://api.semanticscholar.org/CorpusID:276408911

Yu Zhang, Songlin Yang, Rui-Jie Zhu, Yue Zhang, Leyang Cui, Yigiao Wang, Bolun Wang, Freda
Shi, Bailin Wang, Wei Bi, et al. Gated slot attention for efficient linear-time sequence modeling.
Advances in Neural Information Processing Systems, 37:116870-116898, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing Systems,
36:34661-34710, 2023.

Tianchen Zhao, Ke Hong, Xinhao Yang, Xuefeng Xiao, Huixia Li, Feng Ling, Ruiqi Xie, Siqi Chen,
Hongyu Zhu, Yichong Zhang, et al. Paroattention: Pattern-aware reordering for efficient sparse
and quantized attention in visual generation models. arXiv preprint arXiv:2506.16054, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqgian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of

structured language model programs. Advances in neural information processing systems, 37:
6255762583, 2024.

Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Lingxiao Ma, Yuqing Yang, Fan
Yang, Chengruidong Zhang, Lili Qiu, Mao Yang, et al. Pit: Optimization of dynamic sparse deep
learning models via permutation invariant transformation. In Proceedings of the 29th Symposium
on Operating Systems Principles, pp. 331-347, 2023.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
Cao, Xiao Chuanfu, Xingcheng Zhang, Dahua Lin, and Chao Yang. Sampleattention: Near-lossless
acceleration of long context llm inference with adaptive structured sparse attention, 2024. URL
https://arxiv.org/abs/2406.15486.

o4

https://arxiv.org/abs/2406.15486

A Appendix - Linear Attentions with Gates

The recurrent form of linear attention with gates can be expressed as:

Hy = cht) O Hiq1+ th) ® k;fvt
ot = qeH;

And usually the gates can be decomposed into the outer product of two vectors, as Equation
shows, we also rewrite it here:

GV =alby, apb € R

G(t) = CALtTBt, at, l;t S Rle

S =

(96)

Then H; can be expressed as H; = Gget) ®© Hi—1+ (a4 © k:t)T(l;t ©).
A.1 Derivation of Quadratic Parallel Form with Gates

» Unrolling the Recurrence

By repeatedly substituting the definition of Hy_1, we can express H; as a sum over all previous time
steps. Let the state decay term be v; = aijj and the state update term be U; = (a; © k;) T (b; © v;).
The recurrence Hy = vy ® Si—1 + U; expands to:

¢ t
Hi=>Y Il | oU (97)
i=1 | \j=i+1
Substituting the original terms back gives the explicit form for Hy:
t [/ ¢ .
H =3 || II @o) | o (@0 k)" (b o vi))
i=1 | \j=i+1
t [t ¢ A
= (II ap" @ @ok)" | (I b)o ko) (98)
i=1 | \ j=i+l j=i+1
t [t ¢ .
i=1 j=it+1 j=i+1

» Deriving the Parallel Output Equation

We now substitute the unrolled H; into the output equation o; = q; H;.We can rewrite o; as:
t t T t .
Ot:CItZ H a; ©k; © a; H bj ©v; ©b; (99)
i=1 j=i+1 j=i+1

To facilitate parallelization, we define the cumulative products, which can be computed efficiently
using a prefix scan:

t t
Ar=1T]a; and Ay=]]b, (100)
j=1

Jj=1

95

This allows us to express the inner products as H;-:i 105 = A/ A; and]_[3:1» 110 = A/A
Substituting these into the equation for o; and rearranging terms yields:

t T
A A .
Ot_QtE(Ai@ai@ki) (Ai(Dbi(Dvi)
- (101)
= (@ ©A)Y [(&i ® ki/A)T (b @ 'Uz’/Ai)} ® Ay

i=1

This form isolates the dependencies and prepares the expression for matrix representation.

» Final Matrix Formulation

We can now express the entire computation for a sequence of length N using matrix operations.

First, we stack the time-series vectors into matrices @, K, V,A,E € REX4) and the cumulative
products into A, A € RV*4,
Defining the transformed query, key, and value matrices as:

Q=Q0A

K=(KoAd)oA (102)

V=(VeB oA

where @ denotes element-wise division.

The summation over ¢ = 1,...,t corresponds to a masked matrix multiplication. Let M be a causal
mask matrix where My = 1 if i < ¢ and 0 otherwise. The full output sequence O € R¥*? can be
computed in parallel as:

0= ((QET)oM)V)®A (103)

This final equation is fully parallelizable, removing the sequential bottleneck of the original recurrent
formulation.

A.2 Derivation of Chunkwise Form with Gates

Let Hp € R4 denote the hidden state after processing the i-th chunk (i.e., H i = Hic), and
Hig = 0. And we will use A, A, Q, K and V defined in Appendix

» Decomposition of the State

To derive the state H;c; for the j-th token in the (i 4+ 1)-th chunk, we begin with the state at the
previous chunk boundary, H;. By recursively applying the update rule for the j steps within the
current chunk (from token iC' + 1 to iC + j), we can expand the expression for H;c,; as follows:

iC+j iC+j 1C+j
Hicyj = (11 a;bm) OHp+ > ((11 aan) ® ((akam)T(Bmcavm))) (104)

m=1C+1 m=1C+1 n=m-+1

Inter-chunk component Intra-chunk component

This decomposition separates the output o;,c4; = ¢ic+jH;c+; into an inter-chunk and an intra-chunk
component.

» Chunk-level Computation and State Update

56

Intra-Chunk Computation The intra-chunk part of 0;c; can be expressed as Equation m

iC+j [[iC+j .
otts =gcs; > || II anba | © (@n© k) (bp @ vn))

m=1C+1 L n=m-+1

(105)

iC+j iC+j T /it A

m=1C+1 n=m+1 n=m+1

Let Ofit1), Q[i41]; etc., be the sub-matrices corresponding to the (i 4 1)-th chunk. According to
Appendix the intra-chunk output is:

ot = ((QueyKpsy) © Me)Viig) © Ajigy (106)

where M is a causal mask of size C' x C, and all A, Q, K,V are same as defined in Equation m
and Equation [I02

Inter-Chunk Computation The inter-chunk part of 0;c1; can be expressed as follows:

iC+j
0T = Gic+ I (anbm) | © Hy

m=iC+1

(107)

1C+j 1C+j
(qzC'—i-] © H H[z] (H bm)
m=iC+1 m=iC+1

Let (A?Z +1]) = HJ 1 @ic+m and (B i +1}) an:l bic+m be the local cumulative products within
the chunk, which can be futher expressed as Equation [I08

T 7AiC+' 1xd] _ Nicy; Ixd
(Al AiC’] eR (Bl y); = AiC] eR> j=1,....C (108)
Then the inter-chunk outputs for the entire chunk can be shown as Equation [I09
Inter __
ot = [(Quvny © A1y Hig) © Bl (109)

Chunk-to-Chunk State Update To process the next chunk, we must compute the new hidden
state Hp; 1) = H(;11)c- Using the Equation again with j = C:

(i+1)C (i+1)Cc | z+1)c .
Hipy=([T apbw) @ Hyg+ > | TT anbn) © ((am © k)" (b ©)
m=iC+1 m=iC+1 | n=m+1
(i+1)C @+nc [G+1)C (i+1)C A
=(J] ambm)OHg+ >, |[(J[I @n®@am©@kn) ([[b0 ®bm© vm)
m=iC+1 m=iC+1 | n=m+1 n=m-+1

Using A and A defined in Equation then

Airne r Airye T Ao T Ao ;
Hyqy = (Aic) (Ao)| © Hy) +m%+1 (Tm © am © k) (ﬁ © by © V)

o7

Let A, B be the matrices formed by stacking the time-series vectors ay, by (same as in Appendix D
and let:

’ AZ‘ 1\C / A i+1)C .
(Ay); = f;;’ (Biy); = A(; CeRr, j=0,1,...,0-1 (110)
7 J 1C+yJ
Then:
Aine r, Airye v / TR A
Hypy = l(Ao) (Ao)] ® Hy +m§C:+1 {((Am)m © i @ ki) (B)m © bm © vm)}

A’i 1)C Az 1)C ’ ~ i A
= [((L)C T e © Hy + (A © Ky © Ay) T (B © Vi © Byy)

Aic Aic
(111)
Let .
6 = (A(z+1)c) Airye
’ Aic Aic
—) (112)
Ky = A;y © Kjy © Ay
Vig = By © Vi © By
The chuk-level state update can be further simplified to
Hijyy = G © Sy + KjViy (113)

» Final Matrix Formulation
Finally, the complete chunkwise algorithm for the (i + 1)-th chunk is summarized as follows:
Opi41 = O + OS]
O[I;lﬂa]‘ = (Q[Hl]f(fgﬂ] © M)‘7[i+1} O Afiyq
OIS = (Qis) © Al) Hy © B
Hyy = (G © Hy_y) + K Vg

58

	Introduction
	Preliminary
	Standard Attention Computation
	Background of GPU
	FlashAttention
	Attention in Different Tasks
	Attention in Non-Autoregressive Models
	Attention in LLM Training
	Attention in LLM Inference

	Overview
	Hardware-Efficient Attention
	Compact Attention
	Sparse Attention
	Linear Attention

	Hardware-efficient Attention
	Framework
	Methods
	Prefilling
	Decoding

	Compact Attention
	Overall Framework
	Methods

	Sparse Attention
	Overall Framework
	Preliminaries of Sparse Attention
	Pattern-based Sparse Attention
	Dynamic Sparse Attention

	Linear Attention
	Overall Formulation
	Preliminaries of Linear Attention without Gates
	Linear Parallel Form for Non-Autoregressive Tasks
	Recurrent Form for Autoregressive Inference
	Chunkwise Form for Parallel Autoregressive Training

	Preliminaries of Linear Attention with Gates
	Recurrent Form
	Quadratic Parallel Form
	Chunk-wise Formulation for Gated Linear Attention

	Naive Linear Attention
	Linear Attention with a Forget Gate
	Linear Attention with Forget and Select Gates
	Test Time Training

	Conclusion
	Appendix - Linear Attentions with Gates
	Derivation of Quadratic Parallel Form with Gates
	Derivation of Chunkwise Form with Gates

